Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример 4. Пусть математическая модель задачи имеет следующий вид

Пусть математическая модель задачи имеет следующий вид

;

Для получения общей задачи линейного программирования необходимо, чтобы на все переменные было наложено условие неотрицательности. Для наложения этого ограничения на переменную воспользуемся правилом 5. Введем новые неотрицательные переменные и и представим , где и .

Тогда ОЗЛП будет иметь вид

;

или (раскрыв скобки):

;

В симметричной (стандартной) форме записи задача будет иметь вид

;

Здесь ограничение (2.6) умножено на –1, а ограничение (2.7) заменено двумя ограничениями:

откуда, домножив второе ограничение на –1, получим ограничение (2.9) вида ³.

Таким образом, из ограничения (2.7) получены ограничения (2.8) и (2.9).

В канонической форме записи ЗЛП будет иметь вид

;

<== предыдущая лекция | следующая лекция ==>
Приемы, позволяющие переходить от одной формы записи условий задач к другой | Пример 5. Экономико-математическую модель задачи, составленную в примере 2, представим в канонической форме записи:
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 307; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.