Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Статическое электричество и защита от его воздействия

 

Широкое использование во всех областях хозяйствен­ной деятельности диэлектрических материалов и органи­ческих соединений (полимеров, бумаги, твердых и жид­ких углеводородов, нефтепродуктов и т.п.) неизбежно сопровождается образованием зарядов статического электричества, которые не только осложняют проведение технологических процессов, но и зачастую становят­ся причиной пожаров и взрывов, приносящих боль­шой материальный ущерб. Нередко это приводит к гибе­ли людей.

Статическое электричество - это совокупность яв­лений, связанных с возникновением, сохранением и ре­лаксацией свободного электрического заряда на поверх­ности, или вобъеме диэлектриков, или на изолированных проводниках (ГОСТ 12.1.018). Образование и накопление зарядов на перерабатываемом материале связано с двумя следующими условиями:

♦ наличие контакта поверхностей, в результате чего создается двойной электрический слой, возникновение которого связано с переходом электронов в элементарных донорско-акцепторных актах на поверхности контакта. Знак заряда определяет неодинаковое сродство материала поверхностей к электрону;

♦ хотя бы одна из контактирующих поверхностей должна быть из диэлектрического материала.

Основными факторами, влияющими на электризацию веществ, являются их электрофизические свойства и ско­рость разделения поверхностей. Экспериментально уста­новлено, что чем интенсивнее осуществляется процесс, т.е. чем выше скорость отрыва, тем больший заряд остает­ся на поверхности.

Известны следующие пути заряжения объектов: непос­редственное контактирование с наэлектризованными ма­териалами, индуктивное и смешанное заряжение.

К чисто контактному заряжению поверхностей отно­сится, например, электризация при перекачивании угле­водородного топлива, растворителей по трубопроводам. Известно, что трубопроводы из прозрачного диэлектри­ческого материала при перекачивании жидкостей даже светятся.

Наряду с контактным, часто происходит индуктивное заряжение проводящих объектов и обслуживающего пер­сонала в электрическом поле движущегося плоского на­электризованного материала.

Смешанное заряжение наблюдается тогда, когда наэлектризованный мате­риал поступает в какие-ли­бо емкости, изолированные от земли. Этот вид заряже­ния наиболее часто встреча­ется при заливке горючих жидкостей в емкости, при подаче резиновых клеев, тканей, пленок в передвиж­ные емкости, тележки и т.д. Образование зарядов стати­ческого электричества при контакте жидкого тела с твердым или одного твердо-

го тела с другим во многом зависит от плотности соприкос­новения трущихся поверхностей, их физического состоя­ния, скорости и коэффициента трения, давления в зоне контакта, микроклимата окружающей среды, наличия внешних электрических полей и т.д.

Заряды статического электричества могут накапли­ваться и на теле человека (при работе или контакте с на­электризованными материалами и изделиями). Высокое поверхностное сопротивление тканей человека затрудня­ет стекание зарядов, и человек может длительное время находиться под большим потенциалом.

Основной опасностью при электризации различных ма­териалов является возможность возникновения искрового разряда, как с диэлектрической наэлектризованной по­верхности, так и с изолированного проводящего объекта.

Воспламенение горючих смесей искровыми разрядами статического электричества может произойти в том слу­чае, если выделяющаяся в разряде энергия будет выше минимальной энергии зажигания горючей смеси.

Наряду с пожарной опасностью статическое электриче­ство представляет опасность и для работающих.

Легкие «уколы» при работе с сильно наэлектризован­ными материалами вредно влияют на психику работаю­щих и в определенных ситуациях могут способствовать травмам на технологическом оборудовании. Сильные иск­ровые разряды, возникающие, например, при затарива­нии гранулированных материалов, могут приводить к бо­левым ощущениям. Неприятные ощущения, вызываемые статическим электричеством, могут явиться причинами развития неврастении, головной боли, плохого сна, разд­ражительности, покалываний в области сердца и т.д. Кро­ме того, при постоянном прохождении через тело челове­ка малых токов электризации возможны неблагоприят­ные физиологические изменения в организме, приводя­щие к профессиональным заболеваниям. Систематиче­ское воздействие электростатического поля повышенной напряженности может вызывать функциональные изме­нения центральной нервной, сердечно-сосудистой и дру­гих систем организма.

Использование для одежды искусственных или синте­тических тканей приводит также к накоплению зарядов статического электричества на человеке.

Статическое электричество сильно влияет также на ход технологических процессов получения и переработки мате­риалов и качество продукции. При больших плотностях за­ряда может возникать электрический пробой тонких поли­мерных пленок электро- и радиотехнического назначения, что приводит к браку выпускаемой продукции. Особенно большой ущерб наносит вызванное электростатическим притяжением налипание пыли на полимерные пленки.

Электризация затрудняет такие процессы, как просеи­вание, сушку, пневмотранспорт, печатание, транспорти­ровку полимеров, диэлектрических жидкостей, формова­ние синтетических волокон, пленок и т.п., автоматическое дозирование мелкодисперсных материалов, посколь­ку они прилипают к стенкам технологического оборудова­ния и слипаются между собой.

При организации производства следует избегать про­цессов, сопровождающихся интенсивной генерацией за­рядов статического электричества. Для этого необходимо правильно подбирать поверхности трения и скорости дви­жения веществ, материалов, устройств, избегать процес­сов разбрызгивания, дробления, распыления, очищать го­рючие газы и жидкости от примесей и т.д.

Эффективным методом снижения интенсивности гене­рации статического электричества является метод кон­тактных пар. Большинство конструкционных материа­лов по диэлектрической проницаемости расположены в трибоэлектрические ряды в такой последовательности, что любой из них приобретает отрицательный заряд при соприкосновении с последующим в ряду материалом и положительный - с предыдущим. При этом с увеличени­ем расстояния в ряду между двумя материалами абсолют­ная величина заряда, возникающего между ними, возрас­тает.

В соответствии с ГОСТ 12.4.124 используются средства коллективной и индивидуальной защиты.

Средства коллективной защиты от статического элект­ричества по принципу действия делятся на следующие ви­ды: заземляющие устройства, нейтрализаторы, увлажня­ющие устройства, антиэлектростатические вещества, эк­ранирующие устройства.

Заземление относится к основным методам защиты от статического электричества и представляет собой предна­меренное электрическое соединение с землей или ее экви­валентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно является наиболее простым, но необходимым средством защиты в связи с тем, что энергия искрового разряда с проводящих незаземленных элементов технологического оборудования во много раз выше энергии разряда с диэлектриков.

ГОСТ 12.4.124 предписывает, что заземление должно применяться на всех электропроводных элементах техно­логического оборудования и других объектов, на которых возможно возникновение или накопление электростатических зарядов независимо от использования других средств защиты от статического электричества. Необходи­мо также заземлять металлические вентиляционные ко­роба и кожухи теплоизоляции аппаратов и трубопрово­дов, расположенных в цехах, наружных установках, эс­такадах, каналах. Причем указанные технологические линии должны представлять собой на всем протяжении непрерывную электрическую цепь, которая присоединя­ется к контуру заземления не менее чем в двух точках.

Особое внимание необходимо уделять заземлению пе­редвижных объектов или вращающихся элементов обору­дования, не имеющих постоянного контакта с землей. Например, передвижные емкости, в которые насыпают или наливают электризующиеся материалы, должны быть перед заполнением установлены на заземленные ос­нования или присоединены к заземлителю специальным проводником до того, как будет открыт люк.

Нейтрализация зарядов статического электричества производится в тех случаях, когда не представляется воз­можным снизить интенсивность его образования техноло­гическими и иными способами. Для этой цели используют нейтрализаторы различных типов:

· коронного разряда (индукционные и высоковольт­ные);

· радиоизотопные с α- и β-излучающими источниками;

· комбинированные, объединяющие в одной конструк­ции коронные и радиоизотопные

нейтрализаторы;

· создающие поток ионизированного воздуха.

Наиболее простыми по исполнению являются индукци­онные нейтрализаторы. В большинстве случаев они представляют собой корпус или стержень с закрепленны­ми на них заземленными разрядниками, представляющи­ми собой иглы, струны, щеточки. В этих нейтрализаторах используется электрическое поле, создаваемое самим на­электризованным материалом.

Для снижения интенсивности электризации жидкос­тей используют струнные или игольчатые нейтрализа­торы, которые за счет увеличения проводимости среды способствуют стеканию образующихся зарядов на зазем­ленные стенки трубопроводов (оборудования) или корпус нейтрализатора.

В высоковольтных нейтрализаторах коронного и скользящего разрядов в отличие от индукционных ис­пользуется высокое напряжение до 5 кВ, подаваемое на разрядник от внешнего источника питания. Однако необходимость использования высокого нап­ряжения не позволяет применять их во взрывоопасных помещениях и производствах.

Во взрывоопасных помещениях всех классов рекомен­дуется использовать радиоизотопные нейтрализаторы на основе α-излучающих (плутоний-238, -239) типа HP и β-излучающих (тритий) типа НТСЭ источников. Эти нейт­рализаторы малогабаритны, просты по устройству и в об­служивании, имеют большой срок эксплуатации и радиационно безопасны. Использование их в промышленности не требует согласования с органами санитарного надзора.

В случаях, когда материал (пленка, ткань, лента, лист и т.п.) электризуется с высокой интенсивностью либо дви­жется с большой скоростью и применение радиоизотоп­ных нейтрализаторов не обеспечивает нейтрализацию ста­тического электричества, устанавливают комбинирован­ные индукционно-радиоизотопные нейтрализаторы ти­па НРИ. Они представляют собой сочетание радиоизотоп­ного и индукционного (игольчатого) нейтрализаторов ли­бо взрывозащищенных индукционных, высоковольтных (постоянного и переменного тока), высокочастотных нейт­рализаторов.

Весьма перспективными являются пневмоэлектрические нейтрализаторы марок ВЭН-0,5 и ВЭН-1,0 и пневморадиоизотопные марок ПРИН, в которых ионизиро­ванный воздух или какой-либо газ направляется в сторону наэлектризованного материала. Такие нейтрализаторы не только имеют повышенный радиус действия (до 1 м), но и обеспечивают нейтрализацию объемных зарядов в пневмотранспортных системах, аппаратах кипящего слоя, в бункерах, а также нейтрализацию статического электри­чества на поверхностях изделий сложной формы. Устрой­ства для подачи ионизированного воздуха в данном случае во взрывоопасные помещения должны иметь на всем сво­ем протяжении заземленный металлический экран.

В некоторых случаях эффективно использование луче­вых нейтрализаторов статического электричества, кото­рые обеспечивают ионизацию материала или среды под воздействием ультрафиолетового, лазерного, теплового, электромагнитного и других видов излучения.

Для снижения удельного объемного электрического сопротивления в диэлектрические жидкости и растворы полимеров (клеев) вводят различные растворимые в них антиэлектростатические присадки (антистатики), в частности, соли металлов переменной валентности выс­ших карбоновых, нафтеновые и синтетические жирные кислоты. К таким присадкам относятся «Сигбол», АСП-1, АСП-2, а также присадки на основе олеатов хрома, ко­бальта, меди, нафтенатов этих металлов, солей хрома и СЖК и т.д. За рубежом наибольшее применение нашли присадки, разработанные фирмами «Экко» и «Шелл» (присадка ASA-3).

Электрическое сопротивление твердых полимерных материалов (пластмасс, резин, пластиков и пр.) можно снизить, вводя в их состав различные электропроводящие материалы (технический углерод, порошки и т.д.).

Во взрывоопасных производствах для предотвращения опасных искровых разрядов статического электричества, возникающих на теле человека при контактном или ин­дуктивном заряжении наэлектризованными материаламиили элементами одежды, необходимо обеспечить стенание этих зарядов в землю. К непроводящим покрытиям относятся ас­фальт, резина, линолеум и др. Проводящими покрытиями являются бетон, пенобетон, ксилолит и т.д. Заземленные помосты и рабочие площадки, ручки дверей, поручни лестниц, рукоятки приборов, машин, механизмов, аппа­ратов являются дополнительными средствами отвода за­рядов с тела человека.

К индивидуальным средствам защиты от статического электричества относятся специальные электростатиче­ские обувь и одежда.

В некоторых случаях непрерывный отвод зарядов ста­тического электричества с рук человека может осущес­твляться с помощью специальных заземленных браслетов и колец. При этом они должны обеспечивать электриче­ское сопротивление в цепи человек - земля и свободу перемещения рук.



 


<== предыдущая лекция | следующая лекция ==>
Электрозащитные средства | Виды фармакотерапии
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1669; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.