Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Алгебраические кривые




Самостоятельно рассмотреть газодизельную систему питания.

1. Парабола – кривая второго порядка, прямая пересекает ее в двух точках (рис.5.1). При этом парабола может быть определена как:

-множество точек М(xy) плоскости, расстояние FM которых до определенной точки F этой плоскости (фокуса параболы) равно расстоянию MN до определенной прямой АN - директрисы параболы;

-линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и параллельная какой либо касательной плоскости этого конуса;

Рис. 5.1

-в прямоугольной системе координат 0ху с началом в вершине параболы и осью 0х направленной по оси параболы уравнение параболы имеет так называемый канонический вид

y2=2px,

где р (фокальный параметр) - расстояние от фокуса до директрисы.

2. Гипербола - множество точек М плоскости (рис.5.2) разность (по абсолютной величине) расстояний F1M и F2M которых до двух определенных точек F1 и F2 этой плоскости (фокусов гиперболы) постоянна:

F1M - F2M=2а<2с

Середина 0 отрезка F1F2 (фокусного расстояния) называется центром гиперболы;

- линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающая обе его полости;

- в прямоугольной системе координат 0ху с началом в центре гиперболы, на оси 0х которой лежат фокусы гиперболы уравнение гиперболы имеет так называемый канонический

х22 - у22=1, в22 - а2,

где а и в длинны полуосей гиперболы.

 

Рис. 5.2

3. Эллипс:

- множество точек М плоскости (рис.5.3), сумма расстояний МF1 и МF2 которых до двух определенных точек F1 и F2 (фокусов эллипса) постоянна

МF1+МF2=2а.

Середина 0 отрезка F1F2 (фокусного расстояния) называется центром эллипса;

- линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающей все прямолинейные образующие одной полости этого конуса;

- в прямоугольной системе координат 0ху с началом в центре эллипса, на оси 0х которой лежат фокусы эллипса уравнение эллипса имеет следующий вид

х2222=1,

где а и в - длинны большой и малой полуосей эллипса. При а=в фокусы F1 и F2 совпадают и указанное уравнение определяет окружность, которая рассматривается как частный случай эллипса.

 

Рис.5.3

 

2 ПЛОСКИЕ КРИВЫЕ ЛИНИИ

 

Плоская кривая а построена в плоскости a (рис.5.4). Через точку А проведены секущие хорды АЕ и АD. Если точку Е приближать к точке А, секущая АЕ поворачивается вокруг точки А. Когда точка Е совпадет с точкой А (А≡Е) секущая АЕ достигнет своего предельного положения t. В этом предельном положении секущая называется полукасательной к кривой а в точке А. Секущая АD в предельном положении А≡D также представлена полукасательной t.

Кривая линия в точке А имеет две полукасательные прямые, которые совпадают и определяют одну касательную к кривой линии в точке А – кривая в этой точке называется плавной.

Кривая плавная во всех её точках называется плавной кривой линией.

Нормалью n в точке А кривой линии называется перпендикуляр к касательной.

 
 

На кривой линии могут быть точки где разнонаправленные полукасательные не принадлежат одной прямой, а составляют между собой угол. Так на кривой а в точке В угол δ между полукасательными не равен 1800. Точка В в этом случае называется точкой излома.

Рис. 5.4

 

Плоскую кривую линию можно рассматривать как траекторию движения точки в плоскости (рис.5.5); точка движется по касательной к кривой линии, обкатывая эту кривую без скольжения.

Движение точки вдоль кривой а связано с непрерывным изменением двух величин: расстояния S, на которое удалена точка от начального положения и угла α поворота касательной относительно начального положения.

Если с увеличением пути S непрерывно увеличивается и α, кривая называется простой.

Угол α (угол смежности) между касательными в двух бесконечно близких точках кривой, отнесенный к длине дуги между этими точками, определяет степень искривленности кривой линии, т.е. определяет кривизну кривой.

Кривизна прямой в любой её точке равна нулю.

Кривизна произвольной кривой линии в различных точках различна, в отдельных точках она может быть равна нулю. Такие точки называются точками спрямления.

 


Рис. 5.5

 

 
 

Кривизна в каждой из точек плоской кривой а определяется с помощью соприкасающейся в этой точке окружности (рис.5.6).

 

Рис. 5.6

 

Соприкасающейся окружностью или кругом кривизны в данной точке называется предельное положение окружности, когда она проходит через данную точку и две другие бесконечно близкие к ней точки.

Центр соприкасающейся окружности называется центром кривизны кривой в данной точке, а радиус такой окружности – радиусом кривизны кривой линии в данной точке.

Множество центров кривизны кривой является кривая линия- её называют эволютой данной кривой, а кривая по отношению к своей эволюте называется эвольвентой.

 

 

3 КЛАССИФИКАЦИЯ ТОЧЕК ПЛОСКОЙ КРИВОЙ

 

Каждой точке плоской кривой линии соответствует определённое направление касательной прямой и нормали к касательной в данной точке.

 

  1. ОБЫКНОВЕННЫЕ (РЕГУЛЯРНЫЕ) - делят кривую на две ветви, находящиеся по одну сторону от касательной, и по разные стороны от нормали.

 
 

Рис. 5.7

 

Кривая, состоящая только из регулярных точек, называется ПЛАВНОЙ.

2. ОСОБЫЕ ТОЧКИ:

- ТОЧКИ ПЕРЕГИБА

 
 

Точка перегиба делит кривую на две части, расположенные по разные стороны как от совпадающих касательной, так и от нормали.

 

 
 

Рис. 5.8

- ТОЧКИ ВОЗВРАТА ПЕРВОГО РОДА

 
 

Ветви кривой находятся по разные стороны от совпадающих касательных, но по одну сторону от нормалей.

 

Рис. 5.9

- ТОЧКИ ВОЗВРАТА ВТОРОГО РОДА

Ветви кривой находятся с одной стороны от совпадающих касательных и но по одну сторону от нормалей.

 

 
 

Рис. 5.10

 

- ТОЧКА ИЗЛОМА


Это точка, в которой построенные касательные к ветвям кривой имеют некоторый угол между собой.

 

Рис. 5.11

- УЗЛОВАЯ ТОЧКА (кривая пересекает саму себя)

 

 
 

Рис. 5.12 Рис. 5.13

 

Основные свойства плоских кривых при проецировании сохраняются: кривая проецируется в саму себя - парабола в параболу и т.п.

Основные свойства пространственных кривых при проецировании не сохраняются.

 

 

4 Свойства ортогональных проекций кривой линии

 

1. Проекцией кривой линии является кривая линия;

2. Касательная к кривой линии проецируется в касательную к её проекции;

3. Несобственная точка кривой проецируется в несобственную точку её проекции;

4. Порядок линии – проекции алгебраической кривой равен порядку самой кривой или меньше;

5. Число узловых точек (в которых кривая пересекает сама себя) проекции равно числу узловых точек самой кривой.

Случаи когда, плоская кривая проецируется в прямую (свойства 1,4,5), а касательная в точку (свойство 2) не учитываются.

 

5 Пространственные кривые линии

 

 

Пространственные кривые линии в начертательной геометрии обычно рассматриваются как результат пересечения поверхностей или траекторию движения точки.

Пространственную, так же как и плоскую, кривую линию на чертеже задают последовательным рядом точек.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1155; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.