КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Алгебраические кривые
Самостоятельно рассмотреть газодизельную систему питания. 1. Парабола – кривая второго порядка, прямая пересекает ее в двух точках (рис.5.1). При этом парабола может быть определена как: -множество точек М(xy) плоскости, расстояние FM которых до определенной точки F этой плоскости (фокуса параболы) равно расстоянию MN до определенной прямой АN - директрисы параболы; -линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и параллельная какой либо касательной плоскости этого конуса; Рис. 5.1 -в прямоугольной системе координат 0ху с началом в вершине параболы и осью 0х направленной по оси параболы уравнение параболы имеет так называемый канонический вид y2=2px, где р (фокальный параметр) - расстояние от фокуса до директрисы. 2. Гипербола - множество точек М плоскости (рис.5.2) разность (по абсолютной величине) расстояний F1M и F2M которых до двух определенных точек F1 и F2 этой плоскости (фокусов гиперболы) постоянна: F1M - F2M=2а<2с Середина 0 отрезка F1F2 (фокусного расстояния) называется центром гиперболы; - линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающая обе его полости; - в прямоугольной системе координат 0ху с началом в центре гиперболы, на оси 0х которой лежат фокусы гиперболы уравнение гиперболы имеет так называемый канонический х2/а2 - у2/в2=1, в2=с2 - а2, где а и в длинны полуосей гиперболы.
Рис. 5.2 3. Эллипс: - множество точек М плоскости (рис.5.3), сумма расстояний МF1 и МF2 которых до двух определенных точек F1 и F2 (фокусов эллипса) постоянна МF1+МF2=2а. Середина 0 отрезка F1F2 (фокусного расстояния) называется центром эллипса; - линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающей все прямолинейные образующие одной полости этого конуса; - в прямоугольной системе координат 0ху с началом в центре эллипса, на оси 0х которой лежат фокусы эллипса уравнение эллипса имеет следующий вид х2/а2+у2/в2=1, где а и в - длинны большой и малой полуосей эллипса. При а=в фокусы F1 и F2 совпадают и указанное уравнение определяет окружность, которая рассматривается как частный случай эллипса.
Рис.5.3
2 ПЛОСКИЕ КРИВЫЕ ЛИНИИ
Плоская кривая а построена в плоскости a (рис.5.4). Через точку А проведены секущие хорды АЕ и АD. Если точку Е приближать к точке А, секущая АЕ поворачивается вокруг точки А. Когда точка Е совпадет с точкой А (А≡Е) секущая АЕ достигнет своего предельного положения t. В этом предельном положении секущая называется полукасательной к кривой а в точке А. Секущая АD в предельном положении А≡D также представлена полукасательной t. Кривая линия в точке А имеет две полукасательные прямые, которые совпадают и определяют одну касательную к кривой линии в точке А – кривая в этой точке называется плавной. Кривая плавная во всех её точках называется плавной кривой линией. Нормалью n в точке А кривой линии называется перпендикуляр к касательной. На кривой линии могут быть точки где разнонаправленные полукасательные не принадлежат одной прямой, а составляют между собой угол. Так на кривой а в точке В угол δ между полукасательными не равен 1800. Точка В в этом случае называется точкой излома. Рис. 5.4
Плоскую кривую линию можно рассматривать как траекторию движения точки в плоскости (рис.5.5); точка движется по касательной к кривой линии, обкатывая эту кривую без скольжения. Движение точки вдоль кривой а связано с непрерывным изменением двух величин: расстояния S, на которое удалена точка от начального положения и угла α поворота касательной относительно начального положения. Если с увеличением пути S непрерывно увеличивается и α, кривая называется простой. Угол α (угол смежности) между касательными в двух бесконечно близких точках кривой, отнесенный к длине дуги между этими точками, определяет степень искривленности кривой линии, т.е. определяет кривизну кривой. Кривизна прямой в любой её точке равна нулю. Кривизна произвольной кривой линии в различных точках различна, в отдельных точках она может быть равна нулю. Такие точки называются точками спрямления.
Рис. 5.5
Кривизна в каждой из точек плоской кривой а определяется с помощью соприкасающейся в этой точке окружности (рис.5.6).
Рис. 5.6
Соприкасающейся окружностью или кругом кривизны в данной точке называется предельное положение окружности, когда она проходит через данную точку и две другие бесконечно близкие к ней точки. Центр соприкасающейся окружности называется центром кривизны кривой в данной точке, а радиус такой окружности – радиусом кривизны кривой линии в данной точке. Множество центров кривизны кривой является кривая линия- её называют эволютой данной кривой, а кривая по отношению к своей эволюте называется эвольвентой.
3 КЛАССИФИКАЦИЯ ТОЧЕК ПЛОСКОЙ КРИВОЙ
Каждой точке плоской кривой линии соответствует определённое направление касательной прямой и нормали к касательной в данной точке.
Рис. 5.7
Кривая, состоящая только из регулярных точек, называется ПЛАВНОЙ. 2. ОСОБЫЕ ТОЧКИ: - ТОЧКИ ПЕРЕГИБА Точка перегиба делит кривую на две части, расположенные по разные стороны как от совпадающих касательной, так и от нормали.
Рис. 5.8 - ТОЧКИ ВОЗВРАТА ПЕРВОГО РОДА Ветви кривой находятся по разные стороны от совпадающих касательных, но по одну сторону от нормалей.
Рис. 5.9 - ТОЧКИ ВОЗВРАТА ВТОРОГО РОДА Ветви кривой находятся с одной стороны от совпадающих касательных и но по одну сторону от нормалей.
Рис. 5.10
- ТОЧКА ИЗЛОМА
Рис. 5.11 - УЗЛОВАЯ ТОЧКА (кривая пересекает саму себя)
Рис. 5.12 Рис. 5.13
Основные свойства плоских кривых при проецировании сохраняются: кривая проецируется в саму себя - парабола в параболу и т.п. Основные свойства пространственных кривых при проецировании не сохраняются.
4 Свойства ортогональных проекций кривой линии
1. Проекцией кривой линии является кривая линия; 2. Касательная к кривой линии проецируется в касательную к её проекции; 3. Несобственная точка кривой проецируется в несобственную точку её проекции; 4. Порядок линии – проекции алгебраической кривой равен порядку самой кривой или меньше; 5. Число узловых точек (в которых кривая пересекает сама себя) проекции равно числу узловых точек самой кривой. Случаи когда, плоская кривая проецируется в прямую (свойства 1,4,5), а касательная в точку (свойство 2) не учитываются.
5 Пространственные кривые линии
Пространственные кривые линии в начертательной геометрии обычно рассматриваются как результат пересечения поверхностей или траекторию движения точки. Пространственную, так же как и плоскую, кривую линию на чертеже задают последовательным рядом точек.
Дата добавления: 2014-01-11; Просмотров: 1155; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |