Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Электромагнитная индукция




Условия на границе раздела двух магнетиков

 

Пусть поверхность S является границей раздела двух магнетиков. Бу­дем считать, что на этой поверхности нет свободных токов. Построим небольшой воображаемый цилиндр высотой 26, одна половина которого находится в первом магнетике, а другая - во втором (рис. 7.4). Площадь основания цилиндра равна dS. Применим теорему (6.9) о потоке вектора магнитной индукции:

=0

(7.19)

где в качестве поверхности S возьмем поверхность построенного цилин­дра. Поток вектора В через поверхность этого цилиндра равен сумме потоков через его основания и боковую поверхность. При этом равенство (7.19) примет вид

 

 

 

Рис. 7.4- К выводу граничных условий

 

B1n1dS + B2n2dS +Ф=0

Где Ф– поток магнитной индукции через боковую поверхность цилиндра. Устремим δ к нулю. При этом поток Ф обратится в ноль. Учитывая, что вектор n2 единичной нормали к одной из сторон поверхности противоположен по направлению вектору n1 нормали другой ее стороне в той же точке

(n2 = -n1), придем к уравнению

B1n1 = B2n1,

Или

B1 = B2,

Из которого следует, что нормальная составляющая вектора магнитной индукции при переходе через границу раздела двух веществ не изменяется.

Вычислим теперь циркуляцию вектора напряженности магнитного по­ля по небольшому прямоугольному контуру ABCDA (рис. 7.4), две сто­роны которого параллельны поверхности S, но лежат в разных магне­тиках, а длина двух других сторон стремится к нулю. По теореме о циркуляции (7.9) вектора напряженности магнитного поля будем иметь

H1 AB + H2 CD = 0

 

так как на поверхности S нет свободных токов. Введем единичный вектор τ, касательный к поверхности:

 

τ = AB /AB

Учитывая, что CD = - AB, преобразуем равенство (7.21) к виду

H 1τ = H 2τ

Hτ1 = Hτ2

Согласно этому равенству тангенциальные составляющие вектора напря­женности с той и другой стороны поверхности раздела двух магнетиков одинаковы.

Условия (7.20) и (7.22) позволяют исследовать поведение силовых ли­ний магнитного поля у границы раздела двух магнетиков. Если справед­ливо соотношение (7.12), то условие (7.22) можно записать так:

B 1τ /μ1 = B 2τ/μ2

B 11 = B 22 (7.23)

 

где μ1 и μ2 - магнитные проницаемости магнетиков по разные сторог границы раздела.

 

Рис. 7.5. Преломление силовых линий на границе раздела двух магнетиков

На рис. 7.5 изображены силовые линии магнитного поля для случая, когда μ1 < μ2 . Обозначим углы между силовыми линиями и нормалью к поверхности а1 и а2. Из геометрических построений на рис. 7.5 нетрудно получить соотношения

 

tg а1 = Вτ1n1 tg а2 = Вτ2n2

 

При помощи граничных условий (7.20) и (7.23) найдем, что

tg а1 / tg а2 = μ12 (7.24)

 

Из равенства (7.24) следует, что при μ1 < μ2 имеет место неравенство а1 < а2 (рис. 7.5). Если а1 = 0, то и a2 = 0. В этом случае танген­циальные составляющие вектора В равны нулю, а его модуль не изме­няется при переходе через границу раздела в силу условия (7.20). Если а1 = p/2, то и а2 = p/2. При этом нормальные составляющие вектора В равны нулю, а модуль магнитной индукции в среде 1 будем в μ12 раз меньше, чем в среде 2 согласно (7.23).

На рис. 6.3 показаны силовые линии магнитного поля кругового тока. Вставим внутрь витка с током цилиндр, изготовленный из магнетика с большой магнитной проницаемостью (μr >>1). Такие вещества называ­ются ферромагнетиками. Магнитная индукция в центре витка станет больше в μr раз. Увеличится также энергия магнитного поля. В таких случаях говорят, что поле стало сильнее. Почему это происходит? Под действием магнитного поля витка с током ферромагнитный цилиндр на­магничивается и создает свое магнитное поле, которое может быть даже сильнее поля витка. Силовые линии магнитного поля проходят главным образом внутри цилиндра параллельно его оси (рис. 7.6). Они как бы собрались в параллельный пучок. Магнитное поле вне цилиндра у его боковой поверхности слабее в μr раз. Наибольшая магнитная индукция внутри цилиндра и у его торцов. Это свойство используется для созда­ния сильных магнитных полей.

 

 

 

 

 

Рис. 7.6. Силовые линии магнитного поля витка с током концентрируются в ферромагнитном сердечнике

Ферромагнетики произвольной формы, внутри которых преимуще­ственно проходят силовые линии магнитного поля, называются магнит­ными цепями. Простейшая магнитная цепь показана на рис. 7.7. Она представляет собой ферромагнитное ярмо с воздушным зазором. На яр­ме имеется токонесущая обмотка.

Рассмотрим некоторую среднюю силовую линию магнитного поля, проходящую внутри ферромагнетика и пересекающую воздушный зазор. Пусть ее длина равна l, а ширина зазора - d. Применим теорему (7.7) о циркуляции вектора напряженности магнитного поля. Пусть Н1 есть напряженность магнитного поля в зазоре, а Н2 - напряженность поля в ярме. Циркуляция вектора Н по рассматриваемой силовой линии равна сумме токов, охватываемых этой линией:

Н1d + Н2 (l-d) = NI, (7.25)

где N - число витков; I - сила тока в обмотке.

Относительную магнитную проницаемость воздуха можно считать рав­ной единице. В рассматриваемом случае соотношение (7.12) приводит к равенства

 

B1 = μo H1, B2 = μr μo Н2.

 

 

Рис. 7.7. Простейшая магнитная цепь

Силовые линии в зазоре почти перпендикулярны поверхности магне­тика. Поэтому в силу (7.20) магнитные индукции в воздушном зазоре и веществе равны:

В12 = В. (7.27)

 

Разрешив систему (7.25) - (7.27) относительно В, найдем индукцию магнитного поля:

 

 

B1 = μo NI/ (d+ (l-d)/ μr)

 

Из этой формулы видно, что при одном и том же токе в обмотке магнит­ная индукция тем больше, чем меньше ширина зазора d и чем больше магнитная проницаемость μr. Существуют ферромагнетики, для кото­рых μr @ 106/

 

 

ЭЛЕКТРОМАГНЕТИЗМ




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 771; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.