КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Поток энергии волны
При распространении волн частицы среды не переносятся вместе с волной. Процесс распространения волны в каком-либо направлении в среде сопровождается переносом энергии колебаний в этом направлении. Допустим, что S часть фронта плоской волны распространяющейся в направлении оси Ох в некоторый момент времени t (рис. 1.2). По истечении времени ∆ t фронт волны переместится на расстояние ∆ l = v ∆ t, вследствие чего частицы среды в объеме ∆ V = S ∆ l приводятся в колебательное движение. Они будут обладать энергией
∆ W = w ∆ V = wvS ∆ t,
Величина dФ есть поток энергии волны через площадку S (S ориентируют перпендикулярно к направлению распространения волны). Плотностью потока энергии называют энергию, проходящую за единицу времени через единицу площадки, перпендикулярной к направлению распространения волны:
(1.10)
Этот вектор называют вектором Умова и Пойнтинга. Учитывая, что где n – концентрация частиц среды, um = Аω – амплитуда скорости колебаний частиц среды, плотность энергии а j ~ A 2. Распространяющиеся волны характеризуют понятием интенсивность волны I, которая пропорциональна среднему значению плотности потока, а, следовательно, I ~ A 2. В сферической волне, вызванной точечным источником колебаний, плотность потока энергии убывает обратно пропорционально квадрату расстояния от источника колебаний. Для доказательства допустим, что источник колебаний ежесекундно отдает в окружающую среду одну и ту же энергию, равную W. Эта энергия равномерно распределяется по шаровой поверхности фронта волны S = 4π r 2, поэтому через единицу площади этой поверхности в единицу времени проходит энергия , т. е. j ~ 1/ r 2, а А ~ 1/ r (см. 1.9).
Дата добавления: 2014-01-11; Просмотров: 695; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |