Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример 1. В общем случае игра 2 2 определяется матрицей

Лекция 11. Игры порядка 2 х 2. Графический метод решения игр 2 х n и m x 2.

 

В общем случае игра 2 2 определяется матрицей

(39)

Прежде всего необходимо проверить, есть ли у данной игры седловая точка. Если да, то игра имеет решение в чистых стратегиях, причём оптимальными стратегиями игроков 1 и 2 соответственно будут чистая максиминная и чистая минимаксная стратегии. Если же игра с матрицей выигрышей А не имеет чистых стратегий, то оба игрока имеют только такие оптимальные стратегии, которые используют все свои чистые стратегии с положительными вероятностями. В противном случае один из игроков (например 1) имеет чистую оптимальную стратегию, а другой – только смешанные. Не ограничивая общности, можно считать, что оптимальной стратегией игрока 1 является выбор с вероятностью 1 первой строки. Далее, по свойству 1 следует, что а11 = а12 = u и матрица имеет вид

(40)

Легко видеть, что для матриц такого вида одна из стратегий игрока 2 является доминируемой. Следовательно, по свойству 4 этот игрок имеет чистую стратегию, что противоречит предположению.

Пусть Х = (p, 1-p) – оптимальная стратегия игрока 1, где p – можно рассматривать как частоту (вероятность) использования стратегии A1 первым игроком, a (1- p) – частота (вероятность) использования стратегии А2 первым игроком. Так как игрок 2 имеет смешанную оптимальную стратегию, из свойства 1 получим, что (см. также свойство 7):

(41)

Отсюда следует, что при u ¹ 0 столбцы матрицы А не могут быть пропорциональны с коэффициентом пропорциональности, отличным от единицы. Если же коэффициент пропорциональности равен единице, то матрица А принимает вид

(42)

и игрок 1 имеет чистую оптимальную стратегию (он выбирает с вероятностью 1 ту из строк, элементы которой не меньше соответствующих элементов другой), что противоречит предположению. Следовательно, если u ¹ 0 и игроки имеют только смешанные оптимальные стратегии, то определитель матрицы А отличен от нуля. Из этого следует, что последняя система уравнений имеет единственное решение. Решая её, находим

(43)

Тогда подставив, (43) в (41) можно получить выражение для цены игры

. (44)

Аналогичные рассуждения приводят нас к тому, что оптимальная стратегия игрока 2 (второго игрока) Y = (q, 1- q), где q – можно рассматривать как частоту (вероятность) использования стратегии B1 вторым игроком, а (1- q) – частота (вероятность) использования стратегии B2 вторым игроком. Тогда имеем:

 

Откуда

(45)

.

Поясним графический метод решения матричных игр на примерах.

 

 

Рассмотрим матричную игру, заданную платёжной матрицей первого игрока.

 

  B1 B2 B3
A1      
A2      

 

1. Проверим, есть ли у данной игры решение в области смешанных стратегий, т.е. есть ли у заданной матрицы седловая точка.

a. Найдем нижнюю цену игры:

 

 

b. Найдем верхнюю цену игры:

 

c. Нижняя цена игры не равна верхнее цены игры, следовательно, седловой точки у заданной матрицы выигрышей нет и решения в чистых стратегиях отсутствует. Поэтому решение необходимо искать в области смешанных стратегий.

 

2. Данная игра 2 x 3 (или в общем случае 2 x n), следовательно необходимо строить прямые, соответствующие стратегиям второго игрока. Рассмотрим подробно алгоритм решения матричных игр графоаналитическим методом.

 

3. На плоскости хОy введём систему координат и на оси Ох отложим отрезок единичной длины А1, А2, каждой точке которого поставим в соответствие некоторую смешанную стратегию игрока 1 (х, 1 - х). В частности, точке А1 (0;0) отвечает стратегия А1, точке А2 (1;0) – стратегия А2 и т.д.

 

 

4. В точках А1 и А2 восстановим перпендикуляр и на полученных прямых будем откладывать выигрыш игроков. На первом перпендикуляре (в данном случае он совпадает с осью 0y) отложим выигрыш игрока 1 при стратегии А1,а на втором – при стратегии А2. Если игрок 1 применит стратегию А1,то выиграет при стратегии В1 игрока 2 – 2 (элемент a11 матрицы А), при стратегии В2– 3 (элемент a12 матрицы А), а при стратегии В3– 11 (элемент a13 матрицы А).

Если же игрок 1 применит стратегию А2,то его выигрыш при стратегии В1 равен 7 (элемент a21 матрицы А),при В2– 5 (элемент a22 матрицы А),а при В3– 2 (элемент a23 матрицы А). Эти числа определены на перпендикуляре, восстановленном в точке А2. Соединив между собой точки соответствующие a11 и а21, а12 и а22, а13 и а23, получим три прямые, расстояние до которых от оси определяет средний выигрыш при любом сочетании соответствующих стратегий. Например, расстояние от любой точки отрезка a11a21 до оси определяет средний выигрыш u1 при любом сочетании стратегий А1 А2 (с частотами х и 1– х) и стратегией В1 игрока 2. Это расстояние равно

2 х1 + 6(1 - х2) = u1

5. Рассмотрим ломанную a11MNa23.

 

Таким образом, координаты точек, принадлежащих ломанной a11MNa23 определяют минимальный выигрыш игрока 1 при применении им любых смешанных стратегий. Эта минимальная величина является максимальной в точке N; следовательно этой точке соответствует оптимальная стратегия Х* =(p,1- p),а её координата равна цене игры u. Координаты точки N находим как точку пересечения прямых а12а22 и а13а23.

Соответствующие два уравнения имеют вид:

 

Проверка: цена игры должна удовлетворять следующему неравенству:

 

Это неравенство выполнено:

 

Следовательно, Х =, при цене игры u =. Таким образом, мы можем найти оптимальную стратегию при помощи матрицы A*:

 

  B2 B3
A1    
A2    

 

Оптимальные стратегии для игрока 2 можно найти, решив систему:

 

и, следовательно, Y =. (Из рисунка видно, что стратегия B1 не войдёт в оптимальную стратегию.

Значения p, q и u можно также вычислив, используя формулы (43), (44) и (45) для матрицы А*.

 

Ответ: Оптимальное решение находится в области смешанных стратегий. Оптимальная стратегия первого игрока X= Х =, оптимальная стратегия второго игрока Y =, цена игры.

 

 

<== предыдущая лекция | следующая лекция ==>
 | Лекция 12. Сведение матричной игры к задаче линейного программирования
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 408; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.021 сек.