![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 12. Сведение матричной игры к задаче линейного программирования
Решение. Пример 2 Найти решение матричной игры, заданной матрицей выигрышей первого игрока.
1. Проверим, есть ли у данной игры решение в области смешанных стратегий, т.е. есть ли у заданной матрицы седловая точка. a. Найдем нижнюю цену игры:
b. Найдем верхнюю цену игры:
c. Нижняя цена игры не равна верхнее цены игры, следовательно, седловой точки у заданной матрицы выигрышей нет и решения в чистых стратегиях отсутствует. Поэтому решение необходимо искать в области смешанных стратегий. 2. Матрица имеет размерность 4 x 2. В этом случае строим прямые, соответствующие стратегиям игрока 1.
3. Ломанная a11Ka42 соответствует верхней границе выигрыша игрока 1, а отрезок – перпендикуляр из точки K до оси x - цене игры.
Таким образом, полезными стратегиями первого игрока (Полезные стратегии – это те стратегии, который входят в состав оптимальной смешанной стратегии) являются стратегии А1 и А4, так как точка К образована пересечением именно этих стратегий. 4. Тогда можно перейти к матрице А* 2 х 2:
5. Находим оптимальную смешанную стратегию первого игрока, применив формулу (43):
Следовательно, оптимальная смешанная стратегия первого игрока X=. Стратегии А2 и А3 не входят в оптимальную смешанную стратегию (это видно из рисунка), поэтому частота (вероятность) их использования равна нулю. 6. Находим цену игры, применив формулу (44):
Проверка: цена игры должна удовлетворять следующему неравенству:
Это неравенство выполнено:
7. Находим оптимальную смешанную стратегию второго игрока, используя формулу (45):
Следовательно, оптимальная смешанная стратегия второго игрока Y=.
Ответ: Оптимальное решение находится в области смешанных стратегий. Оптимальная стратегия первого игрока X=, оптимальная стратегия второго игрока Y=, цена игры.
Предположим, что цена игры положительна (u > 0). Если это не так, то согласно свойству 6 всегда можно подобрать такое число с, прибавление которого ко всем элементам матрицы выигрышей даёт матрицу с положительными элементами, и следовательно, с положительным значением цены игры. При этом оптимальные смешанные стратегии обоих игроков не изменяются. Итак,пусть дана матричная игра с матрицей А порядка mх n. Согласно свойству 7 оптимальные смешанные стратегии х = (х1,..., хm), y = (y1,..., yn) соответственно игроков 1 и 2 и цена игры u должны удовлетворять соотношениям. (46) (47) Разделим все уравнения и неравенства в (46) и (47) на u (это можно сделать, т.к. по предположению u > 0) и введём обозначения: ,, Тогда (46) и (47) перепишется в виде: ,,,, ,,,. Поскольку первый игрок стремится найти такие значения хi и, следовательно, pi, чтобы цена игры u была максимальной, то решение первой задачи сводится к нахождению таких неотрицательных значений pi, при которых ,. (48) Поскольку второй игрок стремится найти такие значения yj и,следовательно, qj, чтобы цена игры u была наименьшей, то решение второй задачи сводится к нахождению таких неотрицательных значений qj,, при которых ,. (49)
Формулы (48) и (49) выражают двойственные друг другу задачи линейного программирования (ЛП). Решив эти задачи, получим значения pi, qj и u. Тогда смешанные стратегии, т.е. xi и yj получаются по формулам: (50)
Пример. Найти решение игры, определяемой матрицей. Решение. При решении этой игры к каждому элементу матрицы А прибавим 1 и получим следующую матрицу Составим теперь пару взаимно-двойственных задач:
Решим вторую из них
Из оптимальной симплекс-таблицы следует, что (q1, q2, q3) = (0;; 1), а из соотношений двойственности следует, что (p1, p2, p3) = (; 1; 0). Следовательно, цена игры с платёжной матрицей А1 равна ., а игры с платёжной матрицей А: . При этом оптимальные стратегии игроков имеют вид: Х = (х1, х2, х3) = (uр1; uр2; uр3) = = Y = (y1, y2, y3) = (uq1; uq2; uq3) = =.
Дата добавления: 2014-01-11; Просмотров: 457; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |