КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Критерии проверки статистических гипотез
Применение метода Монте-Карло может дать существенный эффект при моделировании развития процессов, натурное наблюдение которых нежелательно или невозможно, а другие математические методы применительно к этим процессам либо не разработаны, либо неприемлемы из-за многочисленных оговорок и допущений, которые могут привести к серьезным погрешностям или неправильным выводам. В связи с этим необходимо не только наблюдать развитие процесса в нежелательных направлениях, но и оценивать гипотезы о параметрах нежелательных ситуаций, к которым приведет такое развитие, в том числе и параметрах рисков. Сущертвуют различные методы проверки статистических гипотез. Наиболее широко используются на практике критерии: • согласия х2 (хи-квадрат); • Крамера-фон Мизеса; • Колмогорова-Смирнова, Критерий х2 предпочтителен, если объемы выборок N, в отношении которых проводится анализ, велики. Это мощное средство, если N> 100 значений. Однако при анализе экономических ситуаций иногда бывает довольно трудно (или невозможно) найти 100 одинаковых процессов, развивающихся с различными исходными данными. Сложность заключается не только в том, что не бывает одинаковых объектов экономики: даже если такие объекты имеются, то к исходным данным относятся не только исходные вероятностные данные и особенности структуры объекта, но и сценарий развития процессов в этом объекте и в тех объектах внешней среды, с которыми он взаимодействует (процессы рынка, указы правительства, принятие новых законов, требования налоговых органов, платежи в бюджеты различных уровней). При относительно малых объемах выборок этот критерий вообще неприменим. Критерий Крамера-фон Мизеса дает хорошие результаты при малых объемах выборок (при N< 10). Однако следует отметить два обстоятельства: 1) при N < 10, каким бы методом ни пользоваться, вопрос о доверительной вероятности при проверке статистической гипотезы решается плохо (эта вероятность мала при значительных размерах доверительных интервалов); 2) метод Монте-Карло используется как раз для того, чтобы недостающие данные собрать с помощью специального вычислительного статистического инструментария и компьютера. Поэтому будем полагать, что реальные объемы выборок, которые можно получить, находятся в пределах 10<N<100. Как указывают многие исследователи, для указанных пределов хорошие результаты дает критерий Колмогорова-Смирнова. Он применяется в тех случаях, когда проверяемое распределение непрерывно и известны среднее значение и дисперсия проверяемой совокупности. Рассмотрим подробнее методику использования этого критерия на конкретном примере. Пример 1. Предположим, что нужно проверить данные, полученные (или наблюдаемые) при использовании метода Монте-Карло и приведенные в табл. 1.1, на их соответствие распределению Пуассона. Таблица 1.1
Дата добавления: 2014-01-11; Просмотров: 634; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |