КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Garmonic balance method. Two aspects of nonlinearity: soft and rigid. A resonance in the nonlinear oscillator
Acquaintance with a garmonic balance method, with features of a resonance in the nonlinear high-frequency injection unit as developing process of the basic fundamental phenomenon in nonlinear systems, - is the purpose of the given lecture. It is a method of the analytical description of stationary waves in poorly nonlinear systems. It is a crude method. Approach consists that we consider forced oscillations in poorly nonlinear system, called by a harmonious superposed force, is strict harmonic oscillations and we write down them in an aspect:
Higher harmonics 2р, 3р … np we neglect, and the information on nonlinearity of system we keep in required amplitudes an and b harmonic oscillations. This assumption physically well justifies in systems poorly nonlinear with a weak dissipation. Really, at small attenuation in LC - system the resonance is expressed strongly. Hence, higher harmonics 2р, 3р … forced oscillations will be suppressed"in comparison with a first harmonic. Let's down the equation for oscillations in poorly nonlinear conservative system:
Let's substitute in it expression (1). Function
Let's note that a term of equation α0, expressing a constant componenet, there is messed, as nonlinearity contains only in reactive elements. All coefficients it is found under known formulas:
At substitution in the
Collecting separately all members with sine and косинусами, we gain two algebraic equations for the description of resonance curves:
In the beginning we observe a case (
Then we solve the equation:
Дата добавления: 2014-01-11; Просмотров: 427; Нарушение авторских прав?; Мы поможем в написании вашей работы! |