Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свойства литейных сплавов

Литейные свойства сплавов

И ТЕХНОЛОГИЧЕСКИЕ (ЛИТЕЙНЫЕ) СВОЙСТВА

ЛИТЕЙНЫЕ СПЛАВЫ, ИХ МАРКИРОВКА

Лекция 2.

 

Основные технологические свойства литейных сплавов – это температура плавления, жидкотекучесть и усадка.

2.1.1. Температура плавления сплавов (или температурный интервал их кристаллизации) определяется их химическим составом и в значительной степени влияет на выбор технологического процесса литья, материала литейной формы, а также типа плавильного оборудования. Кроме того интервал кристаллизации сплава напрямую определяет и механизм его затвердевания (последовательное, объемное), то есть в конечном итоге – микроструктуру и физико-механические свойства сплава.

2.1.2. Жидкотекучесть сплава, т.е. его способность заполнять рабочую полость формы определяется в соответствии с ГОСТ 14438-70 по спиральной или U-образной пробе в песчаной или металлической формах (рис. 2.1.). Сечение спиралеобразной пробы – 50 мм2. Жидкотекучесть характеризуется длиной пути металла (l ж) в мм. Например, для серого чугуна рекомендуются следующие пределы жидкотекучести (в песчано-глинистой форме):

Толщина отливки, мм 3–6 6–15 15–25 > 25

Жидкотекучесть, мм 500–700 400–500 300–400 200–300

Низкая жидкотекучесть влечет спаи, недоливы, газовые раковины, усадочную пористость.

2.1.3.Усадка – это изменение объема и линейных размеров отливок при затвердевании и охлаждения в форме в результате термического сжатия, фазовых превращений и силового взаимодействия с формой. Например, для серого чугуна снижение температуры на каждые 100о С уменьшает его объем на 1,1–1,8%, а графитизация – увеличивает объем на 2,2% на 1% графита.

Различают усадку объемную и линейную. Объемную усадку определяют путем отливки специальной конической (рис. 2.2.) или шаровой пробы. Объем усадочной раковины определяют путем заполнения ее керосином, а также путем взвешивания технологической пробы на воздухе и в дисциллированной воде.

Линейную усадку (свободную или затрудненную) также определяют путем отливки специальных технологических образцов или с помощью прибора Большакова (рис. 2.3.).

Физические и литейные свойства сплавов приведены в таблице 2.1.

Таблица 2.1.

 

  Литейный сплав Плотность кг/дм3 Линейная усадка Объемная усадка Жидкотекучесть Т-ра плавления, о С
1. 2. 3. 4.   5.   6.   7.   8.   9. 10. Сталь (~2% С) Серый чугун Ковкий чугун Высокопрочный чугун Алюминиевые сплавы Магниевые сплавы Бронзы оловянные Бронзы безоловянные Латуни Титановые сплавы 7,8 7,0 7,2 7,2   2,6–2,9   1,8   9,0   8,1   8,6 4,5 1,5 1,3   1,3   1,5   2,2   2,3   2,0 4,5 3,9   до 4   4,5   4,5   6,5   5,5 понижен. высокая понижен. удовл.   хорошая   удовл.   хорошая   понижен.   хорошая хорошая 1420–1510 1200–1250 1270–1320 1230–1260   590–645   590–650   920–1015   890–1140   890–980 1560–1670

 

 

2.2. Литейные сплавы на основе железа (черные сплавы) – это литейные стали и чугуны.

2.2.1. Литейные стали – это сплав железа с углеродом, содержание последнего – не превышает 2%. Кроме того, в них содержатся неизбежные примеси: кремний и марганец считаются полезными, сера и фосфор – вредными. Литейные углеродистые стали отличаются повышенными литейными свойствами, которые улучшаются с увеличением содержания в них кремния.

В соответствии с ГОСТ 977-88 литейные углеродистые стали имеют 9 марок: сталь 15Л, 20Л, 25Л, 30Л, 35Л, 40Л, 45Л, 50Л, 55Л. Цифра означает содержание углерода в сотых долях процента, буква Л – литейная. Временое сопротивление при растяжении составляет от 200 до 350 Мн/м2, относительное удлинение – от 22 до 11%. Чем больше содержание углерода, тем выше sв и тем ниже пластичность.

Литейные углеродистые стали применяют для отливок в сварно-литых конструкциях; для несложных массивных отливок, работающих при низких (до –40° С) и средних температурах (до +45° С) под давлением, станин прокатных станов, шкивов, деталей турбин, корпусов подшипников; для деталей, работающих при вибрационных и ударных нагрузках; для ответственных деталей различных машин (зубчатые венцы и колеса, тормозные диски, катки и др.).

Низколегированные литейные стали (ГОСТ 977-88), средне и высоколегированные (ГОСТ 2176-77) маркируются аналогично: например, марка «Сталь 20Х5МЛ» означает, что содержание углерода в ней 0,20%, хрома – 5%, молибдена – до 1%, Л – литейная. Легированные литейные стали применяются в общем машиностроении ограниченно.

2.2.2. Чугуны.

Чугун – это сплав железа с углеродом, содержание которого более 2,14% (реальное содержание углерода в сером чугуне от 2,2 до 3,7%). Значительное влияние на свойства чугуна оказывают кремний (от 1,2 до 2,9%) и марганец (от 0,5 до 1%).

Чугуны – самые дешевые металлические материалы для деталей машин. Они обладают хорошими литейными и антифрикционными свойствами, а также высокой износостойкостью.

В соответствии с ГОСТ 3443-77 в зависимости от формы графита в микроструктуре чугуны подразделяются на белые, серые, ковкие, высокопрочные, легированные и антифрикционные.

Белые чугуны в конструкциях машин не применяются, они, в частности, являются исходным материалом для получения ковкого чугуна.

Серый чугун (ГОСТ 1412-85) включает 8 марок: СЧ10, СЧ15, СЧ20, СЧ25, СЧ30, СЧ35, СЧ40, СЧ45. Буквы заглавные СЧ означают серый чугун, цифра – предел прочности при растяжении в кг/мм2 или в МПа х 10-1. Твердость серого чугуна НВ = 143–289. В сером чугуне углерод находится в виде пластинчатого графита. Серый чугун имеет хорошие литейные свойства, хорошо обрабатывается. Одгнако серый чугун имеет низкую ударную вязкость и пластичность. Технология изготовления отливок из серого чугуна отличается простотой и высокими технико-экономическими показателями. Примеры отливок из серого чугуна: корпуса, цилиндры, тормозные барабаны, блоки и головки блоков двигателя, изложницы, кокили.

Ковкий чугун (ГОСТ 1215-79) включает 11 марок: ферритный ковкий чугун (КЧ30-6, КЧ33-8, КЧ35-10, КЧ37-12) и перлитный ковкий чугун (КЧ45-7, КЧ50-5, КЧ55-4, КЧ60-3, КЧ65-3, КЧ70-2, КЧ80-1,5). Буквы заглавные КЧ означают ковкий чугун, первая цифра – предел прочности при растяжении в кг/мм2, вторая цифра – пластичность «d» в %.

Ковкий чугун содержит от 2,4 до 2,9% углерода и от 1,1 до 1,6% кремния.

Ковкий чугун получают путем длительного (от 48 до 70 часов) отжига белого чугуна, что значительно усложняет и удорожает производство. Литейные свойства ковкого чугуна хуже, чем у серого чугуна, но он хорошо обрабатывается резанием. Графит в отожженном ковком чугуне – хлопьевидной формы.

Ковкий чугун применяют для изготовления мелких и средних тонкостенных отливок ответственного назначения, работающих в условиях динамических и знакопеременных нагрузок: палец режущего аппарата косилок, корпус задних мостов автомобиля, корпусов коробок передач, ступиц, муфт.

Высокопрочный чугун (ГОСТ7293–85) включает 8 марок: ВЧ35, ВЧ40, ВЧ45, ВЧ50, ВЧ60, ВЧ70, ВЧ80, ВЧ100. Заглавные буквы ВЧ означают высокопрочный чугун, цифры – предел прочности при растяжении в кг/мм2, пластичность ВЧ достигает 20%.

Высокопрочный чугун получают из серого чугуна путем модифицирования металлическим магнием или специальными лигатурами на железокремниевой основе (включают Мg, C, Cu, Ca, редкоземельные металлы) и др. В результате модифицирования графитовые включения приобретают шаровидную форму, что обуславливает высокую прочность и ударную вязкость высокопрочного чугуна. Содержание углерода – 2,7–3,8%, кремния – 0,5–3,8%.

Высокопрочный чугун имеет высокую жидкотекучесть, относительно небольшую линейную усадку, незначительную склонность к образованию горячих трещин.

Высокопрочный чугун применяют для изготовления ответственных тяжелонагруженных деталей машин– коленчатых и распределительных валов, зубчатых колес, цилиндров, станин и траверс молотов и прессов.

Антифрикционные чугуны (ГОСТ 1585-85) включают 6 марок антифрикционного серого чугуна с пластичным графитом (АЧС-1, АЧС-2, АЧС-3, АЧС-4, АЧС-5, АЧС-6), две марки высокопрочного чугуна (АЧВ-1 и АЧВ-2) и две марки ковкого чугуна (АЧК-1 и АЧК-2). Цифра означает номер сплава, остальные обозначения очевидны.

Это – специальные сплавы, способные работать в условиях трения как подшипники скольжения.

Структура этих чугунов отвечает правилу Шарпи: «включение твердой фазы в мягкую основу». Содержание углерода в них – от 2,6 до 4,3%; кремния – от 0,5 до 3,5%, кроме того в них вводят Cr, Cu, Ni, Ti, Sb, Al, Pb, Mg. Главный эксплутационный параметр – твердость НВ = 180–229.

Легированные чугуны (ГОСТ 7769-82) – это чугуны со специальными свойствами – жаростойкие, жаропрочные, износостойкие, коррозионностойкие, немагнитные. Примеры маркировок: ЧХ1, ЧХ2, ЧХ9Н5, ЧС13, ЧН11Г7. Расшифровка марки, химсостава и свойств отливок приводится в таблицах ГОСТа.

Антифрикционные и легированные чугуны в традиционном машиностроении используются редко и в незначительных объемах.

 

<== предыдущая лекция | следующая лекция ==>
Організація спортивно-оздоровчої роботи в соціально-побутовій сфері | Цветные сплавы
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 2461; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.