Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Скалярное произведение векторов

 

Определение 5.14. Скалярным произведением двух векторов называется произведение их модулей на косинус угла между ними:

ab = | a || b | cosφ. (5.4)

Обозначения скалярного произведения: ab, ( ab ), a·b.

 

Свойства скалярного произведения:

1. ab = | a | пра b.

 

Доказательство. По свойству проекции пра b = | b | cos φ, следовательно, ab = | a | пра b.

 

2. ab = 0 a b. 3. ab = ba.

4. (k a) b = k(ab). 5. (a + b) c = ac + bc.

6. a 2 = aa = | a |2, где а 2 называется скалярным квадратом вектора а.

7. Если векторы а и b определены своими декартовыми координатами

a = {X1, Y1, Z1}, b = {X2, Y2, Z2}, (5.5)

то ab = X1X2 + Y1Y2 + Z1Z2.

(5.6)

Доказательство. Используя формулу (5.3), получим:

ab = (X1 i + Y1 j + Z1 k)(X2 i + Y2 j + Z2 k).

Используя свойства 4 и 5, раскроем скобки в правой части полученного равенства:

ab = X1X2 ii +Y1Y2 jj + Z1Z2 kk + X1Y2 ij +X1Z2 ik + Y1X2 ji + Y1Z2 jk + Z1X2 ki + Z1Y2 kj.

Но ii = jj = kk = 1 по свойству 6, ij = ji = ik = ki = jk = kj = 0 по свойству 2, поэтому

ab = X1X2 + Y1Y2 + Z1Z2.

 

8. cosφ = . (5.6)

Замечание. Свойства 2, 3, 4 доказываются из определения 5.14, свойства 5, 6 – из свойств проекции, свойство 8 – из свойства 7 и свойств направляющих косинусов.

 

Пример.

a = {1, -5, 12}, b = {1, 5, 2}. Найдем скалярное произведение векторов а и b:

ab = 1·1 + (-5)·5 + 12·2 = 1 – 25 + 24 = 0. Следовательно, векторы а и b ортогональны.

 

 

Лекция 6.

Векторное и смешанное произведение векторов, их основные свойства и геометрический смысл. Координатное выражение векторного и смешанного произведения. Условия коллинеарности и компланарности векторов.

 

Будем называть три вектора а,b,c, для которых определен порядок следования, тройкой (или упорядоченной тройкой) векторов.

 

Определение 6.1. Тройка некомпланарных векторов abc называется правой (левой), если после приведения к общему началу вектор с располагается по ту сторону от плоскости, определяемой векторами а и b, откуда кратчайший поворот от а к b кажется совершающимся против часовой стрелки (по часовой стрелке).

с с

 
 


b a

       
 
   


<== предыдущая лекция | следующая лекция ==>
Базис и координаты вектора | Векторное произведение векторов. abc – правая тройка abc – левая тройка
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 494; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.