КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Регрессионный анализ. Рассмотрим выборку двумерной случайной величины (Х, Y)
Лекция 22. Рассмотрим выборку двумерной случайной величины (Х, Y). Примем в качестве оценок условных математических ожиданий компонент их условные средние значения, а именно: условным средним назовем среднее арифметическое наблюдавшихся значений Y, соответствующих Х = х. Аналогично условное среднее - среднее арифметическое наблюдавшихся значений Х, соответствующих Y = y. В лекции 11 были выведены уравнения регрессии Y на Х и Х на Y: M (Y / x) = f (x), M (X / y) = φ (y). Условные средние и являются оценками условных математических ожиданий и, следовательно, тоже функциями от х и у, то есть = f* (x) - (22.1) - выборочное уравнение регрессии Y на Х, = φ * (у) - (22.2) - выборочное уравнение регрессии Х на Y. Соответственно функции f* (x) и φ* (у) называются выборочной регрессией Y на Х и Х на Y, а их графики – выборочными линиями регрессии. Выясним, как определять параметры выборочных уравнений регрессии, если сам вид этих уравнений известен. Пусть изучается двумерная случайная величина (Х, Y), и получена выборка из п пар чисел (х 1, у 1), (х 2, у 2),…, (хп, уп). Будем искать параметры прямой линии среднеквадратической регрессии Y на Х вида Y = ρyxx + b, (22.3) Подбирая параметры ρух и b так, чтобы точки на плоскости с координатами (х 1, у 1), (х 2, у 2), …, (хп, уп) лежали как можно ближе к прямой (22.3). Используем для этого метод наименьших квадратов и найдем минимум функции . (22.4) Приравняем нулю соответствующие частные производные: . В результате получим систему двух линейных уравнений относительно ρ и b: . (22.5) Ее решение позволяет найти искомые параметры в виде: . (22.6) При этом предполагалось, что все значения Х и Y наблюдались по одному разу. Теперь рассмотрим случай, когда имеется достаточно большая выборка (не менее 50 значений), и данные сгруппированы в виде корреляционной таблицы:
Здесь nij – число появлений в выборке пары чисел (xi, yj). Поскольку , заменим в системе (22.5) , где пху – число появлений пары чисел (х, у). Тогда система (22.5) примет вид: . (22.7) Можно решить эту систему и найти параметры ρух и b, определяющие выборочное уравнение прямой линии регрессии: . Но чаще уравнение регрессии записывают в ином виде, вводя выборочный коэффициент корреляции. Выразим b из второго уравнения системы (22.7): . Подставим это выражение в уравнение регрессии: . Из (22.7) , (22.8) где Введем понятие выборочного коэффициента корреляции и умножим равенство (22.8) на : , откуда . Используя это соотношение, получим выборочное уравнение прямой линии регрессии Y на Х вида . (22.9)
Дата добавления: 2014-01-11; Просмотров: 672; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |