КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Однофакторный дисперсионный анализ
Лекция 23.
Пусть генеральные совокупности Х 1, Х 2,…, Хр распределены нормально и имеют одинаковую дисперсию, значение которой неизвестно. Найдем выборочные средние по выборкам из этих генеральных совокупностей и проверим при заданном уровне значимо-сти нулевую гипотезу Н 0: М (Х 1) = М (Х 2) = … = М (Хр) о равенстве всех математических ожиданий. Для решения этой задачи применяется метод, основанный на сравнении дисперсий и названный поэтому дисперсионным анализом. Будем считать, что на случайную величину Х воздействует некоторый качественный фактор F, имеющий р уровней: F 1, F 2, …, Fp. Требуется сравнить «факторную дисперсию», то есть рассеяние, порождаемое изменением уровня фактора, и «остаточную дисперсию», обусловленную случайными причинами. Если их различие значимо, то фактор существенно влияет на Х и при изменении его уровня групповые средние различаются значимо. Будем считать, что количество наблюдений на каждом уровне фактора одинаково и равно q. Оформим результаты наблюдений в виде таблицы:
Определим общую, факторную и остаточную суммы квадратов отклонений от среднего: - (23.1) - общая сумма квадратов отклонений наблюдаемых значений от общего среднего ; - (23.2) - факторная сумма отклонений групповых средних от общей средней, характеризующая рассеяние между группами; - (23.3) - остаточная сумма квадратов отклонений наблюдаемых значений группы от своего группового среднего, характеризующая рассеяние внутри групп. Замечание. Остаточную сумму можно найти из равенства S ост = S общ – S факт. Вводя обозначения , получим формулы, более удобные для расчетов: , (23.1`) . (23.2`) Разделив суммы квадратов на соответствующее число степеней свободы, получим общую, факторную и остаточную дисперсии: . (23.4) Если справедлива гипотеза Н 0, то все эти дисперсии являются несмещенными оценками генеральной дисперсии. Покажем, что проверка нулевой гипотезы сводится к сравнению факторной и остаточной дисперсии по критерию Фишера-Снедекора (см. лекцию 12). 1. Пусть гипотеза Н 0 правильна. Тогда факторная и остаточная дисперсии являются несмещенными оценками неизвестной генеральной дисперсии и, следовательно, различаются незначимо. Поэтому результат оценки по критерию Фишера-Снедекора F покажет, что нулевая гипотеза принимается. Таким образом, если верна гипотеза о равенстве математических ожиданий генеральных совокупностей, то верна и гипотеза о равенстве факторной и остаточной дисперсий. 2. Если нулевая гипотеза неверна, то с возрастанием расхождения между математичес-кими ожиданиями увеличивается и факторная дисперсия, а вместе с ней и отношение . Поэтому в результате F набл окажется больше F кр, и гипотеза о равенстве дисперсий будет отвергнута. Следовательно, если гипотеза о равенстве математических ожиданий генеральных совокупностей ложна, то ложна и гипотеза о равенстве факторной и остаточной дисперсий. Итак, метод дисперсионного анализа состоит в проверке по критерию F нулевой гипотезы о равенстве факторной и остаточной дисперсий. Замечание. Если факторная дисперсия окажется меньше остаточной, то гипотеза о равенстве математических ожиданий генеральных совокупностей верна. При этом нет необходимости использовать критерий F. Если число испытаний на разных уровнях различно (q 1 испытаний на уровне F 1, q 2 – на уровне F 2 , …, qр - на уровне F р), то , где сумма квадратов наблюдавшихся значений признака на уровне Fj, сумма наблюдавшихся значений признака на уровне Fj. При этом объем выборки, или общее число испытаний, равен . Факторная сумма квадратов отклонений вычисляется по формуле . Остальные вычисления проводятся так же, как в случае одинакового числа испытаний: .
Дата добавления: 2014-01-11; Просмотров: 372; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |