КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Приведение квадратичной формы к каноническому виду
Квадратичные формы и их связь с симметричными матрицами. Свойства собственных векторов и собственных чисел симметричной матрицы. Приведение квадратичной формы к каноническому виду. Лекция 10. Определение 10.1. Квадратичной формой действительных переменных х1, х2,…,хn называется многочлен второй степени относительно этих переменных, не содержащий свободного члена и членов первой степени. Примеры квадратичных форм: (n = 2), (n = 3). (10.1) Напомним данное в прошлой лекции определение симметрической матрицы: Определение 10.2. Квадратная матрица называется симметрической, если , то есть если равны элементы матрицы, симметричные относительно главной диагонали. Свойства собственных чисел и собственных векторов симметрической матрицы: 1) Все собственные числа симметрической матрицы действительные. Доказательство (для n = 2). Пусть матрица А имеет вид: . Составим характеристическое уравнение: (10.2) Найдем дискриминант: следовательно, уравнение имеет только действительные корни. 2) Собственные векторы симметрической матрицы ортогональны. Доказательство (для n = 2). Координаты собственных векторов и должны удовлетворять уравнениям: Следовательно, их можно задать так: . Скалярное произведение этих векторов имеет вид: По теореме Виета из уравнения (10.2) получим, что Подставим эти соотношения в предыдущее равенство: Значит, .
Замечание. В примере, рассмотренном в лекции 9, были найдены собственные векторы симметрической матрицы и обращено внимание на то, что они оказались попарно ортогональными.
Определение 10.3. Матрицей квадратичной формы (10.1) называется симметрическая матрица . (10.3) Таким образом, все собственные числа матрицы квадратичной формы действительны, а все собственные векторы ортогональны. Если все собственные числа различны, то из трех нормированных собственных векторов матрицы (10.3) можно построить базис в трехмерном пространстве. В этом базисе квадратичная форма будет иметь особый вид, не содержащий произведений переменных.
Определение 10.4. Каноническим видом квадратичной формы (10.1) называется следующий вид: . (10.4) Покажем, что в базисе из собственных векторов квадратичная форма (10.1) примет канонический вид. Пусть - нормированные собственные векторы, соответствующие собственным числам λ1,λ2,λ3 матрицы (10.3) в ортонормированном базисе . Тогда матрицей перехода от старого базиса к новому будет матрица . В новом базисе матрица А примет диагональный вид (9.7) (по свойству собственных векторов). Таким образом, преобразовав координаты по формулам: , получим в новом базисе канонический вид квадратичной формы с коэффициентами, равными собственным числам λ1, λ2, λ3: . (10.5)
Замечание 1. С геометрической точки зрения рассмотренное преобразование координат представляет собой поворот координатной системы, совмещающий старые оси координат с новыми.
Замечание 2. Если какие-либо собственные числа матрицы (10.3) совпадают, к соответствующим им ортонормированным собственным векторам можно добавить единичный вектор, ортогональный каждому из них, и построить таким образом базис, в котором квадратичная форма примет канонический вид.
Пример. Приведем к каноническому виду квадратичную форму x ² + 5 y ² + z ² + 2 xy + 6 xz + 2 yz. Ее матрица имеет вид В примере, рассмотренном в лекции 9, найдены собственные числа и ортонормированные собственные векторы этой матрицы:
Составим матрицу перехода к базису из этих векторов: (порядок векторов изменен, чтобы они образовали правую тройку). Преобразуем координаты по формулам: . Получим: Итак, квадратичная форма приведена к каноническому виду с коэффициентами, равными собственным числам матрицы квадратичной формы.
Дата добавления: 2014-01-11; Просмотров: 779; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |