Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Механические свойства алюминия




Свойства промышленных латуней, обрабатываемых давлением

Латунь Массовая доля, % σв σ0,2 δ,% HB
Cu Прочих элементов MПа
Л90 Л68 Л63 Л 60 ЛА77-2 ЛАН59-3-2   ЛН65-5 ЛЖМц59- 1-1   ЛМц58-2 ЛО70-1 ЛС59-1 ЛК80-3 88-91 67-70 62-65 59-62 76-79 57-60   64-67 57-60   57-60 69-71 57-60 79-81 - - - - 1,75-2,5 А1 2,5-3,5 А1 2-3 Ni 5-6,5 Ni 0,1-0,4 Al 0,6-1,2 Fe 0,5-0,8 Mn 0,3-0,7 Sn 1-2 Mn 1-1,5 Sn 0,8-1,9 Pb 2,5-4 Si                

 

Сплавы на основе алюминия

Свойства алюминия. Алюминий - металл серебристо-белого цвета. Он не имеет полиморфных превращений и кристаллизируется в решетке гранецентрированного куба.

Алюминий обладает малой плотностью, хорошими теплопроводностью и электропроводимостью, высокой пла­стичностью и коррозионной стойкостью. Примеси ухудшают все эти свой­ства.

Постоянные примеси алюминия Fe, Si, Cu, Zn, Ti. В зависимости от содержания примесей первичный алюминий подразделяют на три класса: особой чистоты А999 (≤0,001% примесей), высокой чистоты А995, А99, А97, А95 (0,005-0,05% примесей) и технической чистоты А85, А8 и др. (0,15-1% примесей). Технический алюминий, выпускаемый в виде деформируемого полуфабриката (листы, про­фили, прутки и др.), маркируют АД0 и АД1. Механические свойства алюминия зависят от его чистоты и состояния. Увеличение содержания примесей и пластическая деформация повышают прочность и твердость алюминия. Ввиду низкой прочности алюминий при­меняют для ненагруженных деталей и эле­ментов конструкций, когда от материала требуется легкость, свариваемость, пластичность. Так, из него изготовляют рамы, две­ри, трубопроводы, фольгу, цистерны для перевозки нефти и нефтепродуктов, посуду и др. Благодаря высокой теплопроводности он используется для различных теплообмен­ников, в промышленных и бытовых холо­дильниках. Высокая электропроводимость алюминия способствует его широкому при­менению для конденсаторов, проводов, кабе­лей, шин и др.

 

Марка Сумма примесей, %   Состояние σв σ0,2 δ,%     HB
MПа
  А995 А5 АО   0,005 0.5 Литой Литой Литой Деформиро­ванный и отожженный Деформиро­ванный 50 75 90 90   - - -     150 200  

 

Из других свойств алюминия следует от­метить его высокую отражательную способность, в связи с чем он используется для прожекторов, рефлекторов, экранов телевизоров. Алюминий имеет малое эффективное поперечное сечение захвата нейтронов. Он хорошо обрабатывается давле­нием, сваривается газовой и контактной сваркой, но плохо обрабатывается резанием. Алюминий имеет большую усадку затверде­вания. Высокая теплота плавления и те­плоемкость способствуют медленному осты­ванию алюминия из жидкого состояния, что дает возможность улучшать отливки из алю­миния и его сплавов путем модифицирова­ния, рафинирования и других технологиче­ских операций.

Общая характеристика и классифика­ция алюминиевых сплавов. Алюми­ниевые сплавы характеризуют высокой удельной прочностью, способностью со­противляться инерционным и динамиче­ским нагрузкам, хорошей технологич­ностью. Временное сопротивление алю­миниевых сплавов достигает 500 — 700 МПа при плотности не более 2850 кг/м3. По удельной прочности неко­торые алюминиевые сплавы приближаются или соот­ветствуют высокопрочным сталям. Большинство алюми­ниевых сплавов имеют хорошую корро­зионную стойкость (за исключением сплавов с медью), высокие теплопровод­ность и электропроводимость и хоро­шие технологические свойства (обра­батываются давлением, свариваются то­чечной сваркой, а специальные - сваркой плавлением, в основном хорошо обра­батываются резанием). Алюминиевые сплавы пластичнее магниевых и многих пластмасс. Большинство из них превос­ходят магниевые сплавы по коррозион­ной стойкости, пластмассы - по стабиль­ности свойств.

Основными легирующими элемента­ми алюминиевых сплавов являются Cu, Mg, Si, Mn, Zn; реже-Li, Ni, Ti. Многие легирующие элементы образуют с алю­минием твердые растворы ограничен­ной переменной растворимости и про­межуточные фазы. Это дает возможность под­вергать сплавы упрочняющей термиче­ской обработке. Она состоит из закалки на пересыщенный твердый раствор и естественного или искусственного ста­рения.

Легирующие элементы, особенно переходные, повышают температуру рекристаллизации алюминия. При кристаллизации они образуют с алюминием пересыщенные твердые растворы. В процессе гомогенизации и горячей обработки давлением проис­ходит распад твердых растворов с обра­зованием тонкодисперсных частиц интерметаллидных фаз, препятствующих прохождению процессов рекристаллиза­ции и упрочняющих сплавы. Это явле­ние получило название структурного упрочнения, а применительно к прес­сованным полуфабрикатам - пресс-эф­фекта. По этой причине некоторые алю­миниевые сплавы имеют температуру рекристаллизации выше температуры закалки. Для снятия остаточных напря­жений в нагартованных полуфабрикатах (деталях), полученных холодной обра­боткой давлением, а также в фасонных отливках проводят низкий отжиг.

Конструкционная прочность алюми­ниевых сплавов зависит от примесей Fe и Si. Они образуют в сплавах нераство­римые в твердом растворе фазы. Независи­мо от формы (пластинчатой, игольчатой и др.) кристаллы этих фаз снижают пла­стичность, вязкость разрушения, сопро­тивление развитию трещин. Легирова­ние сплавов марганцем уменьшает вредное влияние примесей, так как он связывает их в четвертую фазу, кристаллизирующуюся в ком­пактной форме. Однако более эффек­тивным способом повышения конструк­ционной прочности является снижение содержания примесей с 0,5-0,7% до 0,1-0,3% (чистый сплав), а иногда и до сотых долей процента (сплав повышенной чистоты). В первом случае к марке сплава добавляют букву Ч, например, Д16Ч, во втором-ПЧ, на­пример, В95ПЧ. Особенно значительно повышаются характеристики пластично­сти и вязкости разрушения в направле­нии, перпендикулярном пластической деформации.

Алюминиевые сплавы классифици­руют по технологии изготовления (де­формируемые, литейные, спеченные), способности к термической обработке (упрочняемые и неупрочняемые) и свой­ствам.

Сплавы на основе магния

Свойства магния. Магний-металл сере­бристо-белого цвета. Он не имеет поли­морфных превращений и кристаллизуется в плотноупакованной гексагональной решет­ке.

Магний и его сплавы отличаются низкой плотностью, хорошей обра­батываемостью резанием и способностью воспринимать ударные и гасить вибра­ционные нагрузки. Теплопроводность магния в 1,5, а электропроводимость — в 2 раза ниже, чем у алюминия. Примерно в 1,5 раза мень­ше, чем у алюминия, и его модуль нормаль­ной упругости. Однако они близки по удель­ной жесткости. В зависимости от содержания примесей установлены следующие марки магния (ГОСТ 804-72): Мг96 (99,96% Mg), Мг95 (99,95% Mg), Мг90 (99,90% Mg). При­меси Fe, Si, Ni, Си понижают и без того низ­кие пластичность и коррозионную стойкость. При нагреве магний активно окисляется и при температуре выше 623°С на воздухе воспламеняется. Это затрудняет плавку и разливку магния и его сплавов. По­рошок, тонкая лента, мелкая стружка магния представляют большую опасность, так как самовозгораются на воздухе при обычных температурах, горят с выделением большого количества теплоты и излучением ослепи­тельно яркого света.

Общая характеристика и классифика­ция магниевых сплавов. Достоинством магниевых сплавов является высокая удельная прочность. Временное сопро­тивление отдельных сплавов достигает 250-400 МПа. Основными ле­гирующими элементами магниевых сплавов являются Al, Zn, Mn. Для до­полнительного легирования используют цирконий, кадмий, церий, ниодим и др. Механические свойства сплавов магния при температуре 20-25°С улучшаются при легировании алюминием, цинком, цирконием. Цирконий и це­рий оказывают модифицирующее дей­ствие на структуру сплавов магния. Особенно эффективно модифицирует цирконий. Добавка 0,5-0,7% Zr умень­шает размер зерна магния в 80-100 раз. Это объясняется структурным и раз­мерным соответствием кристаллических решеток. Кроме того, цирконий и марганец способствуют устранению или значительному уменьшению влия­ния примесей железа и никеля на свой­ства сплавов. Они образуют с этими элементами промежуточные фазы боль­шой плотности, которые при кристалли­зации выпадают на дно тигля, очищая тем самым сплавы от вредных приме­сей.

Увеличение растворимости легирую­щих элементов в магнии с повышением температуры дает возмож­ность упрочнять магниевые сплавы с помощью закалки и искусственного старения. Однако термическая обработ­ка магниевых сплавов затруднена из-за замедленных диффузионных процессов в магниевом твердом растворе. Малая скорость диффузии требует больших выдержек при нагреве под закалку для растворения вторичных фаз. Благодаря этому такие сплавы можно закаливать на воздухе, они не склонны к естественному старению. При искусственном старении необходимы высокие температуры (до 200° С) и боль­шие выдержки (до 16-24 ч). Наиболь­шее упрочнение термической обработкой достигается у сплавов магния, леги­рованных неодимом.

Временное сопротивление и особенно предел текучести магниевых сплавов значительно повышаются с помощью термомеханической обработки, которая состоит в пластической деформации за­каленного сплава перед его старением.

Из других видов термической обра­ботки к магниевым сплавам применимы различные виды отжига: гомогенизация, рекристаллизационный отжиг и отжиг для снятия остаточных напряжений. Для деформируемых сплавов диффузионный отжиг совмещают с нагревом для горя­чей обработки давлением. Температура рекристаллизации магниевых сплавов в зависимости от их состава находится в интервале 150-300°С, а рекристаллизационного отжига - соответственно в интервале 250-350 °С. Более высокие температуры вызывают рост зерна и понижение механических свойств. От­жиг для снятия остаточных напряжений проводят при температурах ниже темпе­ратур рекристаллизации.

Магниевые сплавы хорошо обрабаты­ваются резанием (лучше, чем стали, алюминиевые и медные сплавы), легко шлифуются и полируются. Высокие ско­рости резания и небольшой расход энергии способствуют снижению стои­мости обработки резанием деталей из магниевых сплавов по сравнению с дру­гими сплавами. Они удовлетворительно свариваются контактной роликовой и дуговой сваркой. Прочность сварных швов деформируемых сплавов соста­вляет 90% от прочности основного ме­талла.

К недостаткам магниевых сплавов, наряду с низкой коррозионной стой­костью и малым модулем упругости, следует отнести плохие литейные свой­ства, склонность к газонасыщению, окислению и воспламенению при их приготовлении. Небольшие добавки бе­риллия (0,02-0,05%) уменьшают склон­ность к окисляемости, кальция (до 0,2%) - к образованию микрорыхлот в отливках. Плавку и разливку магниевых сплавов ведут под специальны­ми флюсами.

По технологии изготовления маг­ниевые сплавы подразделяют на ли­тейные (МЛ) и деформируемые (МА); по механическим свойствам-на сплавы невысокой и средней прочности, высоко­прочные и жаропрочные; по склонности к упрочнению с помощью термической обработки-на сплавы, упрочняемые и неупрочняемые термической обработ­кой. Для повышения пластичности маг­ниевых сплавов их производят с пони­женным содержанием вредных примесей Fe, Ni, Си (повышенной чистоты). В этом случае к марке сплава доба­вляют строчные буквы «пч», например, МЛ5пч или МА2пч.

 

 

Титан и сплавы на его основе

Свойства титана. Титан-металл серого цвета. Он имеет две полиморфные модификации. Полиморфное превращение (882 °С) при медленном охлаждении происходит по нор­мальному механизму с образованием поли­эдрической структуры, а при бы­стром охлаждении - по мартенситному меха­низму с образованием игольчатой структуры.

Промышленный способ производства ти­тана состоит в обогащении и хлорировании титановой руды с последующим ее восстано­влением из четыреххлористого титана металлическим магнием. Полученную при этом титановую губку марки­руют по твердости специально, выплав­ленных из нее образцов (ТГ-100, ТГ-110 и т. д.). Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.

Для уменьшения количества примесей и более равномерного их распределения по сечению слитка рекомендуется его двух-трехразовая переплавка. Характерную для титановых слитков крупнозернистую структуру измельчают путем модифицирования цирконием или бором. Полученный в результате переплава технический титан маркируют в зависимости от со­держания примесей ВТ1-00 (Σ примесей ≤ 0,398%), ВТ1-0 (Σ примесей ≤0,55%).

 

Механические свойства иодидного и технического титана

Титан Сумма примесей, % σв σ0,2 δ Ψ HB
МПа %
ВТ1-0 Иодидный 0,3 0,093 450-600 250-300 380-500 100-150 20-25 50-60 70-80 2070 1300

 

Отличительными особенностями титана являются хорошие механические свойства, малая плотность, высокая удельная проч­ность и коррозионная стойкость. Низкий модуль упругости титана, почти в 2 раза меньший, чем у железа и никеля, за­трудняет изготовление жестких конструкций. Механические свойства титана характери­зуются хорошим сочетанием прочности и пластичности.

Высокая пластичность иодидного титана по сравнению с другими металлами, имеющими гексагональную кристаллическую ре­шетку (Zn, Cd, Mg), объясняется большим количеством систем скольжения и двойникования.

Механические свойства титана сильно за­висят от наличия примесей, особенно водорода, кислорода, азота и угле­рода, которые образуют с титаном твердые растворы внедрения и промежуточные фазы: гидриды, оксиды, нитриды и карбиды. Не­большое количество кислорода, азота и угле­рода повышает твердость, временное сопро­тивление и предел текучести, однако при этом значительно уменьшается пластичность, снижается коррозионная стой­кость, ухудшаются свариваемость, способ­ность к пайке и штампуемость. Поэтому со­держание этих примесей в титане ограничено сотыми, а иногда тысячными долями про­цента. Аналогичным образом, но в мень­шей степени, оказывают влияние на свойства титана железо и кремний. Очень вредная примесь в титане - водород. Присутствуя в весьма незначительном количестве, водо­род выделяется в виде тонких хрупких пла­стин гидридной фазы на границах зерен, что значительно охрупчивает титан. Водородная хрупкость наиболее опасна в сварных кон­струкциях из-за наличия в них внутренних напряжений. Допустимое содержание водо­рода в техническом титане находится в пре­делах 0,008-0,012%.

Технический титан хорошо обрабатывает­ся давлением. Из него изготовляют все виды прессованного и катаного полуфабриката: листы, трубы, проволоку, поковки. Титан хо­рошо сваривается аргонодуговой и точечной сваркой. Сварной шов обладает хорошим со­четанием прочности и пластичности. Проч­ность шва составляет 90% прочности основ­ного металла.

Титан плохо обрабатывается резанием, на­липает на инструмент, в результате чего тот быстро изнашивается. Для обработки титана требуются инструменты из быстрорежущей стали и твердых сплавов, малые скорости ре­зания при большой подаче и глубине реза­ния, интенсивное охлаждение. К недостатку титана относятся также низкие антифрик­ционные свойства.

Влияние легирующих элементов на структуру и свойства титановых сплавов. Легирующие элементы по характеру влияния на полиморфные превращения титана подразделяют на три группы: α-стабилизаторы, β-стабилизаторы и ней­тральные элементы. Практическое значение для легирования титана имеет только алюминий, так как кислород и азот сильно охрупчивают титановые спла­вы.

Алюминий - широко распространен­ный, доступный и дешевый металл. Вве­дение его в титановые сплавы уменьшает их плотность и склонность к водородной хрупкости, повышает модуль упругости, прочность при 20-25°С и вы­соких температурах.

Добавка к сплавам титана с алюми­нием таких β-стабилизаторов, как V, Mo, Mb, Mn, уменьшает склонность к образованию упорядоченной струк­туры (сверхструктуры). Снижая температуру полиморфного превращения титана, β-стабилизаторы расширяют область твердых растворов на основе Tiα.

 

 

Лекция 10




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 6806; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.