КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Органические полимеры
Органическими называют обширный класс веществ, содержащих в своей основе углерод. Кроме углерода в этих веществах содержится обычно водород, кислород, азот, сера, фосфор. Соединения, в которых содержатся также и другие элементы, называют элементоорганическими. Органические вещества обладают молекулярной структурой, т. е. состоят из отдельных молекул, внутри которых атомы связаны преимущественно весьма прочными ковалентными связями. Между собой молекулы связаны сравнительно слабыми поляризационными силами. Большинство органических веществ не содержит свободных электронов и ионов, поэтому они являются диэлектриками. Так как силы поляризационной связи между отдельными молекулами невелики, то органические вещества с малой молекулярной массой являются при обычной температуре газами или жидкостями. Вещества с более высокой молекулярной массой являются твердыми уже при обычной температуре. Ввиду поляризационного характера связи, обусловливающего большие расстояния между молекулами, и малого атомного веса элементов, образующих органические соединения, они отличаются невысоким удельным весом. Поляризационный характер связи определяет также невысокую механическую прочность. Органические вещества сравнительно легкоплавки и за некоторыми исключениями отличаются низкой нагревостойкостью. Подавляющее большинство из них горючи. Легкое горение органических веществ объясняется тем, что связи атомов углерода между собой и с водородом в молекулах органических веществ значительно менее прочным, чем связи углерода и водорода с кислородом. Поэтому при реакциях окисления выделяется большое количество тепла, которое разлагает органические вещества перед горением, облегчая их реакцию с кислородом. Горению органических веществ благоприятствует и то, что конечные продукты их окисления — газы легко удаляются от очага горения и не препятствуют его развитию. Легкая горючесть большинства органических материалов является их существенным недостатком. Однако в последнее время получен ряд плохо горючих или негорючих элементоорганических соединений. Так, замена водорода органических веществ фтором практически полностью препятствует их воспламенению или горению. Хлор, вводимый в больших количествах в органические вещества, также препятствует их горению и гасит пламя, обрывая развитие цепных реакций горения. Существенно затрудняется горючесть и при образовании кремнийорганических соединений. Различия в свойствах отдельных органических веществ объясняются различиями в их составе и строении. Особенно широкое распространение в качестве электроизоляционных материалов получили полимеры. По происхождению полимеры могут быть природными материалами (целлюлоза, натуральный каучук, янтарь и др.) или синтетическими продуктами (бакелит, полистирол, полиэтилен и др.). Они приобретают все возрастающее значение в технике и быту благодаря удачному сочетанию многих важных качеств, особенно у новых синтетических высокополимеров. Часто они отличаются высокими электроизоляционными свойствами в широком диапазоне рабочих напряжений и частот (вплоть до СВЧ), при высокой влажности окружающей среды и в широком интервале рабочих температур. Они обладают также хорошими тепло- и звукоизоляционными свойствами. Как правило, не подвержены коррозии, гниению и во многих случаях отличаются высокой химической стойкостью. Ввиду малой плотности, сочетающейся с достаточной прочностью, на основе полимеров можно получить материалы (пластмассы, ткани) с высокой удельной прочностью. Многие полимеры отличаются ценными специальными свойствами: прозрачностью, радиопрозрачностью, диамагнетизмом, антифрикционными свойствами, высокой эластичностью и т. д. Большинство полимеров легко поддаются различным видам технологической обработки (литье, прессование, вытяжка, обработка резанием, распыление и т. д.) и на их основе производят весьма разнообразные по свойствам продукты: пластмассы и резины, электроизоляционные лаки и лакокрасочные материалы, клеи, компаунды, волокнистые и пленочные материалы. Они находят широкое применение в промышленности и в быту. Большинство полимеров может быть получено из дешевого сырья — природных и попутных газов нефтедобычи и переработки нефти, угля в сочетании с водой и воздухом. Поэтому производство полимерных материалов развивается быстрыми темпами. По структуре полимеры делятся на линейные, линейно-разветвленные и сетчатые: аморфные, кристаллитные и кристаллитно-ориентированные.
Основные виды полимерных молекул и структур полимерных материалов. Молекулы - линейные (а), разветвленные (б), сетчатые (в); структуры - аморфные (г), кристаллитные (3), кристаллитно-ориентированные (е). Старение полимеров Недостатком многих полимерных материалов, проявляющимся при эксплуатации, является изменение их размеров и свойств, называемое старением. Старение связано с физико-химическими превращениями, происходящими во многих полимерах в процессе работы, особенно при нагреве, механическом истирании, радиационном облучении и т. п. Процессы превращения в зависимости от природы материала и действующих факторов могут быть весьма различными. Чаще всего это деструкция — реакция, протекающая с разрывом химической связи в главной цепи макромолекулы и образованием продуктов более низкого молекулярного веса. В зависимости от основной причины, вызвавшей ее, различают: термодеструкцию, механодеструкцию, фотохимическую и химическую, в частности окислительную, деструкции. Особенно склонны к процессам окислительной деструкции полиолефины.
Дополнительные компоненты полимерных композиций Полимерные материалы: пластические массы, пленки и волокна, лаки, компаунды, клеи, герметики, резины и т. д. редко состоят из одного полимера. Для улучшения их функциональных качеств они представляют собою обычно композиции из различных полимерных и неполимерных материалов, модифицирующих их свойства. Чаще всего такими дополнительными компонентами, содержащимися во многих полимерных материалах, являются: стабилизаторы, наполнители, пластификаторы, мягчители и смазки, красители, растворители, другие модификаторы (отверждающие агенты, присадки, сообщающие негорючесть, повышенную нагревостойкость и т. п.). Стабилизаторами называются вещества, добавляемые в большинство полимерных материалов (в количестве порядка десятых долей процента) для предотвращения реакций старения. Наполнители — это частицы различных материалов, добавляемые во многие полимерные композиции для сообщения им специальных свойств (повышения прочности, сообщения магнитных свойств, электропроводности, снижения звуко- и теплопроводности и т. д.) или для их удешевления. Наполнители могут быть газообразными, жидкими и твердыми. Чаще всего их применяют в виде газообразных или твердых включений в полимерную основу. Порошковые наполнители - древесная мука, окислы (ZnO, Ti02, SiO2), мел, каолин и другие. Они мало препятствуют растеканию пресспорошка в пресс-формах и позволяют получить дешевые изделия сложной конфигурации. Волокнистые наполнители - хлопчатобумажное, стеклянное, борное волокно, обрезки бумаги и ткани позволяют получать материалы в два и более раза прочнее, чем при порошковых наполнителях. Особенно высока прочность пластмасс (композиционных материалов) при применении в качестве наполнителей слоистых материалов ткани, шпона или стеклянных, длинных тонких волокон; волокон бора, графитовых нитей и т. п., уложенных оптимальным образом по отношению к действующим нагрузкам. Такие композиционные материалы обладают максимальной удельной прочностью, что значительно выше, чем у многих металлических материалов. Из них готовят напряженные элементы самолетов и двигателей (корпусы, роторы и лопатки компрессоров, обшивку самолетов и т. д.). Наполнение резин сажей или металлическими частицами придает им проводящие, а магнитными (например, ферритами) — магнитные свойства. Наполнение газами достигается вспениванием в процессе получения полимеров, введением твердых частиц — порофоров, выделяющих газы при нагреве в размягченный полимер. Иногда вспенивания достигают введением в полимер легкокипящих жидкостей. Пластификаторы - вещества, добавляемые в полимерные материалы для повышения эластичности и морозостойкости (снижения хрупкости), а также для снижения температуры переработки материалов в изделия. В некоторых случаях, например для эфиров целлюлозы, такая переработка горячим прессованием вообще была бы невозможна, ибо температура разложения непластифицированных продуктов лежит ниже их температуры размягчения. Смазки, часто вводимые в состав различных полимерных композиций, способствуют отлипу деталей металлического оборудования, применяемого при переработке полимерной композиции в изделия. В качестве смазок используют стеарин, стеараты, парафин и другие легкоплавкие вещества. Красители вводят в полимерные материалы для придания им красивого декоративного вида или в маркировочных целях. Растворимые в полимере красители нередко называются краской, нерастворимые - пигментами. Другие присадки. В полимерных материалах могут содержаться и другие, кроме перечисленных, присадки, придающие материалам специальные качества. Так, для уменьшения горючести композиций на основе горючих полимеров в них вводят 10—20% антипиренов — фосфорнокислый аммоний, трехокись сурьмы, хлорированный парафин или перхлорвинил и т. п. Для придания полимерным материалам антисептических свойств и стойкости против действия грибковой плесени и разрушающего действия насекомых к ним добавляют антисептики, фунгициды и инсектоциды. В качестве таких веществ нередко служат соли ртути и меди, а также другие ядовитые вещества. Эти присадки особенно часто добавляют в краски, изоляцию проводов и другие полимерные материалы, предназначенные для работы в тропическом климате. Неполярные и слабополярные термопласты Неполярными или слабополярными являются полимеры с симметричной структурой молекул или со слабополярными связями, например С—Н. Полиэтилен (продукт полимеризации этилена) стал одним из самых распространенных пластиков. Это объясняется тем, что в нем высокие электроизоляционные характеристики сочетаются с достаточной механической прочностью, стойкостью к нагреву и низким температурам, действию влаги, кислот и щелочей, хорошей перерабатываемостью и сравнительно низкой стоимостью ввиду доступности сырья. Основными недостатками полиэтилена является склонность к старению (окислению), особенно при нагреве, и горючесть. Первый недостаток устраняется присадками антистарителей (ароматические амины, сажа и др.). Для уменьшения горючести вводят в состав массы трехокись сурьмы или совмещают полимер с хлорированными углеводородами. Полипропилен. Его недостатком является более высокая чувствительность к действию кислорода в атмосферных условиях. Он быстрее стареет. Во избежание старения его стабилизируют аминами и газовой сажей. Полистирол. Я вляясь продуктом полимеризации стирола, представляет собой бесцветную прозрачную смолу с малым удельным весом и высокими электроизоляционными свойствами. При нормальной температуре полистирол прочнее полиэтилена σв=50-60 МН/м2, но отличается малой нагревостойкостью (~75-80°С) и склонен к растрескиванию. Это основные недостатки полистирола. Полистирол стоек к действию кислот (кроме азотной), щелочей и озона. Он мало изменяет свои характеристики под действием влаги, но на открытом воздухе (особенно под влиянием света) постепенно желтеет и легко растрескивается. Полистирол обладает высокой прозрачностью (до 95%) и высоким коэффициентом преломления (n=1,60), что позволяет использовать его в качестве оптических стекол. Он, в частности, применяется для остекления строевых огней. Полистирол широко применяют для изготовления высокочастотных пластмасс, пленок, лаков и т. д. Разнообразно применение сополимеров, содержащих полистирол. Политетрафторэтилен (фторопластом-4) представляет собой молочно-белый, жирный на ощупь продукт. Многие отличительные свойства фторопластов связаны с высокой энергией связи С—F, равной 450 кДж/моль. Ввиду высокой энергии этой связи фторопласт имеет неразветвленные линейные молекулы. Необлученный фторопласт является одним из самых стойких веществ. На него практически не действуют ни кислоты, ни щелочи, ни органические вещества. Он не горюч, не смачивается водой и отличается исключительно высокой влагостойкостью. Он разрушается только под действием жидких щелочных металлов и растворяется при высокой температуре (~270°С) в перфторированных керосинах. Электроизоляционные качества фторопласта-4 очень высоки и мало изменяются при изменении температуры и рабочей частоты. Недостатками фторопласта-4 являются холодная текучесть, увеличивающаяся при механических нагрузках, и низкая короностойкость. При высокой температуре, начиная с 250°С, происходит термическая деструкция фторопласта-4, которая протекает особенно интенсивно начиная с 400° С. Некоторые продукты деструкции весьма токсичны. Полярные термопласты Полярными являются полимеры с несимметричной структурой молекул, которым присущи собственные дипольные моменты. Одной из основных особенностей полярных диэлектриков по сравнению с неполярными являются значительно более высокие. Поэтому, как правило, они не пригодны для изоляции в цепях высоких и сверхвысоких частот. Их часто называют низкочастотными диэлектриками. Вследствие полярности они легче притягивают влагу и полярные примеси. Большинство из них смачиваются водой. Удельное электросопротивление у этих материалов обычно ниже, чем у неполярных. Многие из них обладают высокой химической стойкостью, высокой механической прочностью и эластичностью. После дополнительной пластификации их нередко применяют в виде гибких резинообразных продуктов. Полихлорвинил (поливинилхлорид, винипласт) получается полимеризацией хлористого винила. Благодаря асимметричному распределению электроотрицательных атомов хлора он заметно полярен. При нормальной температуре полихлорвинил — твердая хрупкая слегка желтоватая смола, отличающаяся высокой химической устойчивостью. Он стоек против действия воды, кислот и щелочей, озона, спирта, бензина и керосина, но растворим в дихлорэтане, хлорбензоле, частично в ацетоне, бензоле и др. Его нагревостойкость (60—70°) и морозостойкость (-25°) невысоки. Он горит с большим трудом и при устранении внешнего источника пламени гаснет. Его электроизоляционные свойства вполне удовлетворительны, но под воздействием электрических искр полихлорвинил легко разлагается, образует проводящие мостики и выделяет хлористый водород. Полихлорвинил легко окрашивается в разные цвета. Политрифтормонхлорэтилен (фторопласт-3) отличается от фторопласта-4 тем, что один атом фтора заменен на значительно больший по размеру атом хлора, вследствие чего появляется асимметрия в структуре
т. е. возрастает полярность, уменьшается степень кристалличности, увеличивается диэлектрическая проницаемость и значительно возрастают потери, но удельное электросопротивление, электрическая прочность, дугостойкость и влагостойкость у фторопласта-3 остаются высокими. Температура плавления понижается примерно до 210° (ниже температуры разложения), чем значительно облегчается переработка материала в изделия. Механическая прочность фторопласта-3 значительно выше, чем фторопласта-4. Применяется фторопласт-3 как химически стойкая, и нагревостойкая изоляция. Полиэфирные смолы представляют собой продукты конденсации многоосновных кислот и спиртов. Двухосновные кислоты при полимеризации с двухатомными спиртами дают линейные термопластичные полимеры. Например, при конденсации терефталевой кислоты с этиленгликолем образуется получивший в последнее время широкое применение продукт — полиэтилентерефталат, или лавсан. Полимер содержит 65—75% кристаллической фазы, имеет температуру плавления около 240—260°С. Полиэтилентерефталат отличается хорошими диэлектрическими свойствами. Он весьма влагостоек и отличается высоким поверхностным электросопротивлением во влажной атмосфере. Важной особенностью полиэтилентерефталата является его высокая механическая прочность в ориентированных полимерах, достигающая 350-450 МН/м2. Полиэтилентерефталат применяется чаще всего в виде волокнистой и пленочной изоляции для электрических машин и конденсаторов. Из полиэтилентерефталатовой пленки готовят также аэростаты. Термореактивные полимеры Ранее указывалось, что термореактивными являются полимеры с пространственной системой ковалентных связей. Они, как правило, более нагревостойки, тверды и хрупки, чем термопластичные полимеры. Модуль упругости у них выше, а коэффициент линейного расширения ниже, чем у термопластичных полимеров. В обычных растворителях, в которых растворяются термопластичные полимеры, они не растворимы. Термореактивные полимеры широко применяют в качестве основы пластмасс (особенно композиционных), компаундов, лакокрасочных материалов и электроизоляционных лаков, а также клеев. Фенольноформальдегидные смолы. Бакелитовыми называются конденсационные термореактивные феноло- и крезолоформальдегидные смолы. Их изготовляют из сравнительно дешевого сырья фенола (или крезола) и формальдегида и они являются дешевой основой большого количества пластмасс, лаков и клеев. Так как бакелит хрупок, то выпускаемые на его основе пластмассы наполненные (композиционные). Резол — наименее конденсированный продукт с линейными молекулами. Он плавится при нагревании, хорошо растворим в спирте, ацетоне, щелочах и феноле. Резитол — продукт дальнейшей конденсации, в который переходит резол при нагреве до 90—100° С. В спирте и ацетоне он не растворяется, а лишь набухает. При обычной температуре резитол хрупок. Резит — конечный продукт конденсации, в который переходит резол при нагреве до 150—160°С, не плавок, при 300° С он начинает обугливаться, не растворим в спирте и ацетоне и стоек по отношению к воде, бензину и маслам, серной и соляной кислотам, однако под действием азотной кислоты и щелочей разрушается. Благодаря наличию в структуре молекул групп ОН бакелит полярен и отличается в растворах высокими клеящими свойствами. Из фенопластов, наполненных слюдяной и древесной мукой и называемых часто карболитами, изготовляют множество мелких деталей.Из более прочных пресспорошков - волокнитов с длинноволокнистыми наполнителями в виде хлопковых очесов, обрезков ткани, асбестового и стекловолокна делают более крупные детали — корпусы приборов, педали и рукоятки управления, коллекторы электрических машин, ролики тросового управления, основания печатных схем и т. д. Изделия из фенопластов длительно нагревостойки до 120° С. Существенные недостатки бакелитовых смол — их сравнительно низкое поверхностное сопротивление, особенно во влажной атмосфере, а также низкая стойкость против поверхностных разрядов. Аминопласты — пресспорошки на основе карбамидофор-мальдегидных смол, наполненные чаще всего целлюлозным волокном, отличаются от фенопластов повышенной дугостойкостью. Бесцветные карбамидные смолы окрашивают в разнообразные, порой весьма яркие цвета. Недостатками аминопластов являются более высокая влагопоглощаемость, более низкая нагревостойкость, худшие технологические свойства, чем у фенопластов. Они также дороже фенопластов. Полиэфиропласты. Важными представителями группы полиэфирных материалов с удачным сочетанием комплекса электроизоляционных, механических, химических и технологических свойств являются эпоксидные смолы. Эпоксидные смолы получают в виде жидких, вязких или твердых продуктов в результате реакции конденсации соединений, содержащих концевые эпоксигруппы, послужившие основанием наименования этих смол. Эпоксидные смолы термопластичны и имеют ограниченное применение. Их используют присадкой к ним веществ, вызывающих необратимое отвердение, т. е. переход в термореактивное состояние за счет создания поперечных связок между молекулами. Способность отвердевать при комнатных или невысоких температурах нагрева без выделения побочных продуктов и с малой усадкой 0,5-1% — ценное технологическое преимущество эпоксидных смол, вследствие которого они становятся незаменимыми как заливочные массы и компаунды. Эпоксидные смолы отличаются хорошими электроизоляционными свойствами, но дугостойкость их невысока. Основное применение эпоксидных смол — изготовление компаундов, лаков, клеев, пластмасс. Слоистые пластмассы Они состоят из пропитанных смолой и склеенных между собой листов наполнителя (древесного шпона, бумаги, ткани, стеклоткани и т. п.) и отличаются наибольшей прочностью. Однако из них наиболее трудно прессовать детали сложной конфигурации. Они отличаются максимальной анизотропией свойств. В электро- и радиотехнике, а также в приборостроении из материалов этой группы чаще всего применяют гетинакс (бумолит), текстолит и стеклопласты. Гетинакс состоит из слоев бумаги, пропитанных смолой и спрессованных под давлением при нагреве в листы и плиты толщиной 0,2—40 мм или трубы. Гетинакс применяют в основном для различных панелей, изоляционных шайб и прокладок, колодок зажимов, каркасов катушек, проходных изоляторов, изоляции обмоток и т. д. Текстолит состоит из слоев хлопчатобумажной ткани, пропитанных бакелитовой смолой и спрессованных под давлением при нагреве до 150—160° С. По сравнению с гетинаксом текстолит отличается повышенной твердостью и прочностью при ударных нагрузках и более высоким сопротивлением скалыванию вдоль слоев. Он характеризуется лучшей способностью обрабатываться механически без растрескивания и сколов. Текстолит дороже гетинакса. Тем не менее, благодаря высокой вибростойкости и хорошим технологическим качествам текстолит применяют не только как конструкционный, но и как электроизоляционный материал. Текстолит применяют для изготовления щитков и панелей, изолирующих и тросовых роликов, бесшумных скоростных шестерен, вкладышей подшипников, амортизационных прокладок для поглощения вибраций. Стеклопласт - пластик с наполнителем из стекловолокна. Применение стеклянных волокон вместо органических позволяет резко улучшить механические и электрические свойства, повысить нагревостойкость, снизить влагопоглощение. Если применяют наполнитель из стеклянной ткани, то пластик называется стеклотекстолитом. В современных стеклопластах, применяя прочное бесщелочное стекловолокно и новые полимеры, удается реализовать очень высокую удельную прочность, значительно большую, чем у известных металлических материалов. Поэтому в последние годы развивается тенденция по изготовлению основных силовых конструкций летательных аппаратов и авиационных двигателей из прочных стеклопластов. Из них готовят также обтекатели антенн и т. п. В конструкционных целях применяют аналогичные стеклопластам по структуре другие композиционные материалы: хаифилл — полимер, наполненный графитовым волокном, полимеры, наполненные борным, сапфировым волокном и т. п. Пенопласт (вспененные полимеры) — важная разновидность современных пластмасс. Пенистой структуры достигают введением в смолу газообразователей (порофоров)— веществ, которые в процессе производства пластмассовых изделий разлагаются с выделением газов. Пенопласты отличаются малым удельным весом, хорошими звуко-, тепло- и электроизоляционными свойствами: исключительно малой диэлектрической проницаемостью и малыми диэлектрическими потерями. Поэтому пенопласты являются хорошими радиопрозрачными материалами. Они применяются в обтекателях антенн как наполнители для повышения жесткости авиационных конструкций, как тепло-, звукоизоляционные перегородки. Эпоксидные пенопласты начинают широко применять в виде электроизоляционной влагостойкой пенистой заливочной массы — пенокомпаунда. Кремнийорганические пенопласты отличаются максимальной нагревостойкостью (длительно до 200—250°, кратковременно — 300—350°). Для тепло- и злектроизоляции при более высоких температурах (длительно 500—600°) применяют иногда неорганические пенопласты — вспененная слюда вермикулит, пеностекло и пенокерамика. Металлопласты Полимерные материалы (пластмассы), наполненные металлическим заполнителем в виде порошков, волокон, ткани, называются металлопластами. Металл сообщает таким композициям ряд специальных свойств — магнитных (при наполнении железом, пермаллоем и т. д.), повышенную электро- и теплопроводность, поглощение и отражение радиоволн, повышенную демпфирующую способность и т. д. Полимеры, наполненные магнитными порошками, называются магнитодиэлектриками.
Лекция 11
Дата добавления: 2014-01-11; Просмотров: 64237; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |