Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Закон нормального распределения случайных погрешностей изготовления

Погрешность и точность изготовления детали.

Под погрешностью изготовления понимается разность между действительным размером детали и наилучшим, т.е. обеспечивающим оптимальное функционирование изделия. Обычно наилучший размер расположен в середине поля допуска:

(3.1)

Точность - степень приближения действительного размера детали к оптимальному.

Пусть изготовлена партия из n деталей по одному и тому же чертежу. В силу случайных погрешностей размеры деталей в партии отличаются друг от друга. Если причины появления погрешностей носят случайный характер, например отклонение температуры окружающей среды, неоднородность физико-механических свойств материала заготовки, разброс в режимах обработки в связи с неточностью их воспроизведения станком, то такие погрешности называются случайными. Пусть каждая из этих деталей имеет некоторый диаметр Di (), отягощенный случайной погрешностью. В большинстве случаев распределение изготовленных деталей, например по D, отвечает закону нормального распределения погрешностей или закону Гаусса:

(3.2)

где

- плотность вероятности;

- математическое ожидание, ;

- среднее квадратичное отклонение, ;

 

- дисперсия, параметр, характеризующий величину случайных погрешностей.

Анализируя формулу (3.2), можно убедиться, что плотность вероятности достигает максимума при :

; (3.3)

(3.4)

где

- функция Лапласа;

- квантиль Гаусса;

() - доверительный интервал.

Приведем некоторые распространенные значения функции Лапласа:

;

Площадь под кривой (вероятность появления значения измеренной величины) в интервале от -∞ до +∞ всегда равна единице (рис. 3).

В технологии обычно выбирают такое оборудование, чтобы вероятность появления действительного размера детали внутри интервала составляла 0,997. В этом случае:

=, (3.5)

где

- доверительный интервал.

Для большинства производств выполняется это правило- правило 6σ.

<== предыдущая лекция | следующая лекция ==>
На основании ряда предпочтительных чисел в диапазоне размеров от 1 мкм до 20 м разработан ГОСТ Р 6636-69 Основные нормы взаимозаменяемости. Нормальные линейные размеры | Понятие допуска, его графическое изображение
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 679; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.