Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Л. 6. Связь между ДВИ и КРИ. Свойства КРИ II-го рода связанные с формой пути интегрирования




Явное задание кривой интегрирования

Параметрическое задание пути интегрирования

Пусть дуга АВ задана параметрическими уравнениями. АВ: x=x(t), y=y(t) (), где функции x(t), y(t) – непрерывны вместе со своими производными на , причем точке А соответствует значение параметра , а точке В - , тогда:

Аналогично:

Эти фор. наз. формулами сведения КРИ – II к ОИ.

Если дуга АВ задана уравнением у=у(х), где , причем функции у(х) и y’(x) непрерывны на отрезке АВ, а точке А соответствует x=a, точке В – x=b, то приняв за параметр t переменную х (х=t, y=y(t)), запишем формулу, аналогичную формуле (7)

Аналогично АВ: x=x(y), , получим:

 


 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 382; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.