КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Об интегрировании простых дробей
После разложения правильной дробно-рациональной функции на простые дроби, для нахождения интеграла может потребоваться найти интегралы четырех типов: 1); 2), (k > 1); 3) ; 4) , (k > 1). При этом квадратный трехчлен в 3-ем и 4-ом интегралах не имеет вещественных корней, так что . Интегралы 1) и 2) легко находятся: 1) ; 2) , (k > 1); Нахождение интегралов третьего типа рассмотрено ранее. Рассмотрим нахождение интеграла четвертого типа. Чтобы устранить переменную х в числителе, сформируем в числителе производную квадратного трехчлена и получим два интеграла, один из которых будет табличным, а другой без переменной х в числителе. , где . Получим рекуррентную формулу для вычисления интеграла . В квадратном трехчлене выделим полный квадрат и сделаем замену переменной. . Интеграл умножим и поделим на . В числителе подынтегральной дроби добавим и вычтем . Разобьем интеграл на два интеграла. Первый из получающихся интегралов того же типа, что и , только степень в знаменателе на единицу меньше. Второй интеграл можно найти по частям. Найдем . . Тогда . Окончательно, получим рекуррентную формулу . Пример 4 27. Найти интеграл . В числителе подынтегральной функции сформируем производную знаменателя () и разобьем интеграл на два интеграла . Один интеграл найдем с помощью замены переменной . В другом интеграле также сделаем замену переменной и разобьем на два интеграла, получим . .Здесь первый интеграл равен . Второй интеграл найдем, используя метод интегрирования по частям. . Тогда интеграл . Найдем исходный интеграл .
Дата добавления: 2014-01-11; Просмотров: 375; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |