КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Средняя квадратическая погрешность измерений. Предельная погрешность
Для оценки степени точности ряда измерений одной и той же величины недостаточно знать арифметическое среднее погрешностей измерений, т.к. в ряде измерений может быть не отражено наличие сравнительно крупных погрешностей разных знаков, поскольку последние взаимно компенсируются. И Гаусс предложил критерий оценки точности измерений, не зависящий от знаков отдельных сравнительно крупных погрешностей ряда – среднюю квадратическую погрешность. Средняя квадратическая ошибка (погрешность) измерений – это корень квадратный из арифметического среднего квадратов истинных погрешностей и вычисляется по формуле:
.
Поскольку истинное значение измеряемой величины Х не известно, то среднюю квадратическую погрешность m вычисляют по уклонениям
Через уклонения арифметического среднего среднюю квадратическую погрешность определяют по формуле Бесселя: m =, где [2] – сумма квадратов вероятнейших ошибок; n – число измерений, n-1 – число избыточных измерений. Анализ кривой нормального распределения Гаусса показывает, что при достаточно большом числе измерений одной и той же величины случайная погрешность измерения может быть: Больше средней квадратической m в 32 случаях из 100; Больше удвоенной средней квадратической 2m в 5 случаях из 100; Больше утроенной средней квадратической 3m в 3 случаях из 1000. Маловероятно, чтобы случайная погрешность измерения оказалась больше утроенной средней квадратической, поэтому утроенную среднюю квадратическую погрешность считают предельной: В качестве предельной часто принимают среднюю квадратическую погрешность, равную: с вероятностью ошибки равной порядка 1%.
Дата добавления: 2014-01-11; Просмотров: 1478; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |