где - некоторое постоянное число. Если среднюю квадратическую погрешность арифметического среднего обозначить через М, а среднюю квадратическую погрешность одного измерения через m, то согласно можно записать:
М2 = , откуда М = ,
Т.е. средняя квадратическая погрешность арифметического среднего в раз меньше средней квадратической погрешности одного измерения.
Это свойство средней квадратической погрешности арифметического среднего позволяет повысить точность измерений путем увеличения числа измерений. Например, требуется определить величину угла с точностью при наличии 30-секундного теодолита. Очевидно, что если измерить угол 4 раза и определить арифметическое среднее, то его средняя квадратическая погрешность согласно составит .
Средняя квадратическая погрешность арифметического среднего М показывает, в какой мере снижается влияние случайных погрешностей при многократных измерениях.
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление