КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Способы вычисления углового ускорения
Для нахождения углового ускорения воспользуемся уравнением движения машинного агрегата в дифференциальной форме
При этом, где тангенс угла наклона касательной в каждой точке графика, значение производной подставляются в исходное уравнение с учетом знака.
Для нахождения углового ускорения воспользуемся кинематической зависимостью между угловой скоростью и ускорением:
При этом, где тангенс угла наклона касательной в каждой точке графика, значение производной подставляются в исходное уравнение с учетом знака. Применение этой формулы приводит к большим погрешностям, так как она основывается на использовании одной из конечных зависимостей расчета. Кроме того, в точках с нулевыми значениями расчет по этой формуле дает неверный результат. Определение времени работы механизма (быстродействие механизма) Чтобы найти закон движения начального звена, т.е. изменение кинематических параметров в функции времени, ее представляют в виде:, откуда после интегрирования получают. Найденная зависимость позволяет определить время работы механизма и найти искомую зависимость. Если функция получена в виде графика (Рис), то приходится проводить графическое интегрирование так называемой обратной функции.
Порядок графического интегрирования обратной функции: 1. Строят оси координат, в которых вычерчивают график. Определяют масштабы и. 2. Ось абсцисс делят на некоторое число шагов с равными или не равными интервалами. В пределах каждого интервала заданную функцию считают постоянной и равной среднему значению ординаты. 3. Концы ординат середины каждого интервала проецируют на ось, отмечая точки. Далее отрезки поворачивают на циркулем до совпадения с осью ординат, отмечая точки. 4. В координатах по оси ординат вверх откладывают отрезок интегрирования. Из точки проводят лучи, соединяя найденные точки с точкой:,, …. 5. На искомом графике проводят линии параллельные в пределах соответствующего интервала лучам,, …. Первый отрезок проводят через начало координат, следующие отрезки соответственно через точку, затем и. т. д. 6. Ломаная линия дает приближенный график искомой функции, а ординаты в узловых точках соответствуют значению этой функции. 7. Полученные точки соединяют плавной кривой, это и есть график. Подсчитывают масштаб:.
Вывод масштабной формулы: Кривая изображена в масштабе по оси ординат и - по оси абсцисс. Искомая функция может быть найдена по соотношению:. В каждом интервале, например от до можно приближенно считать, что , (1) т.е. можно принять, что площадь криволинейной трапеции равновелика площади прямоугольника высотой и основанием. Лучи,, … образуют с положительным направлением оси абсцисс углы, причем . (2) Так как на искомом графике проводят линии параллельные лучам,, …. в пределах соответствующих интервалов, то эти линии наклонены относительно положительного направления оси абсцисс под такими же углами причем . (3) приравниваем правые части соотношений (2) и (3): или. (4) Т.к. по Рис. , (5) то, подставив в (5) соотношения (4) и учитывая, что отрезки на графиках связанны с соответствующими физическими величинами с помощью масштабов соотношениями: (5) Получают (6) где:. Соответственно масштаб искомого графика: . II. Рассмотрим механизм, нагруженный силами и моментами, которые являются функциями только скорости, а приведенный момент инерции рассматриваемого механизма имеет постоянную величину.
Требуется определить закон движения начального звена, т. е. или. В качестве примеров можно привести турбогенераторы и гидрогенераторные агрегаты, грузоподъемные машины и станки, прокатные станы, центробежные насосы и воздуходувки с электроприводом, следящие системы с электромоторным приводом и др. Приведение сил и масс осуществляется так же, как и в случае, рассмотренном выше, а для решения поставленной задачи целесообразно воспользоваться уравнением движения в дифференциальной форме: , т.к., то, тогда. Так как, то, разделяем переменные и интегрируем с учетом того, что: . Из этого уравнения определяется закон изменения скорости звена приведения. При этом необходимо подставлять в уравнение с учетом знака.
III. Рассмотрим более общий случай динамического исследования когда силы и моменты приложенные к механизму, являются как функциями перемещения, так и функциями скорости, а приведенный момент инерции механизма – величина переменная.
Примерами такого режима работы могут служить технологические машины с электроприводами (металлорежущие станки, ковочные прессы и пр.), различные приборы с электромагнитным приводом (реле, средства автоматической защиты); сюда же относятся изучение таких процессов как запуск ДВС от электростартера и др. Поставленная задача решается также при помощи уравнения движения в интегральной форме. Особенности решения заключаются в том, что работа сил, зависящих только от положения, отделяется от работы сил, зависящих от скорости. Поэтому и приведение этих двух видов сил осуществляется раздельно.
Дата добавления: 2014-01-11; Просмотров: 343; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |