КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Векторное поле
Векторная линия -линия, в каждой точке которой вектор поля направлен по касательной к ней. Уравнения векторной линии легко получить из условия коллинеарности векторов поля и касательной . Пример. Написать уравнения векторных линий векторного поля - линии уровня – окружности (С>0). Векторной трубкой называется поверхность, образованная векторными линиями.
Формула Остроградского – Гаусса. Пусть компоненты векторного поля непрерывны и имеют непрерывные частные производные в пространственно односвязной замкнутой области V и на ее кусочно гладкой границе . Тогда справедлива формула Остроградского – Гаусса . Заметим, что левая часть формулы представляет собой поток векторного поля через поверхность . Доказательство. 1) Формула Остроградского – Гаусса, в силу произвольности P, Q, R состоит из трех частей, в каждую из которых входит одна из компонент векторного поля P, Q, R. В самом деле, можно взять P = 0, Q = 0 и доказывать отдельно часть формулы в которую входит только R. Остальные части формулы (при P = 0, R = 0, Q = 0, R = 0) доказываются аналогично. Будем доказывать часть формулы 2) Для доказательства выбранной части формулы представим пространственную область V в виде объединения конечного числа цилиндрических тел, не имеющих общих внутренних точек, с образующими, параллельными оси OZ. Доказательство можно проводить для цилиндрического тела. В самом деле, тройной интеграл в правой части равен сумме тройных интегралов по цилиндрическим телам (свойство аддитивности). Поверхностный интеграл в левой части также равен сумме поверхностных интегралов по полным поверхностям цилиндрических тел, причем при суммировании интегралы по общим границам соседних цилиндрических тел будут сокращаться из-за противоположного направления внешних нормалей на общих границах. Итак, будем доказывать соотношение для цилиндрического тела V, проектирующегося в область D на плоскости OXY. Пусть «верхняя» граница цилиндрического тела – поверхность описывается уравнением , «нижняя» граница – поверхность описывается уравнением . Боковую поверхность цилиндрического тела, параллельную оси OZ, обозначим . Сразу заметим, что поток векторного поля через боковую поверхность равен нулю. Действительно, , так как нормаль на боковой поверхности ортогональна оси OZ и . Заметим также, что на «верхней» поверхности , а на «нижней поверхности . Поэтому при переходе от поверхностного интеграла пок двойному интегралу по области D и обратно надо менять знак, а при переходе от поверхностного интеграла пок двойному интегралу по области D и обратно менять знак не надо.
Замечание. Формулу Остроградского – Гаусса можно записать в «полевом» виде - поток векторного поля через замкнутую поверхность равен объемному интегралу от дивергенции поля по области, ограниченной поверхностью . Дивергенция векторного поля (расходимость) есть . Дивергенция – это характеристика векторного поля, инвариантная относительно системы координат. Покажем это.
Инвариантное определение дивергенции.
Рассмотрим произвольную точку M в пространственной области V. Выберем ее окрестность VM – шар радиуса r с центром в точке M. Обозначим - ее границу – сферу радиуса r. По теореме о среднем для тройного интеграла (по формуле Остроградского – Гаусса). Стягиваем окрестность к точке M, получаем дивергенцию векторного поля в точке M. . Это и есть инвариантное определение дивергенции. Поэтому дивергенция векторного поля в точке M имеет смысл объемной плотности потока векторного поля через окрестность этой точки и характеризует мощность источника (если >0) или стока (если <0) векторного поля в точке M. Если >0, то точка M – источник векторного поля, если <0, то точка M – сток векторного поля. Если в некоторой области дивергенция равна нулю, то в этой области нет ни источников, ни стоков, поток векторного поля через границу такой области равен нулю – «сколько поля втекает в область, столько и вытекает из нее».
Пример. Определить расположение источников и стоков векторного поля . Выяснить, является ли точка M(1,2,3) источником или стоком. . Все точки, для которых 2xy+xz >0 – источники, все точки, для которых 2xy+xz <0 – стоки. На поверхности 2xy+xz = 0 нет ни источников, ни стоков. Точка M – источник, так как .
Дата добавления: 2014-01-11; Просмотров: 3869; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |