Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Разбиение и эквивалентность

Def. Система (конечная или бесконечная) непустых подмножеств А1, A2,..., Аn... множества А называется разбиением, если:

1) объединение множеств Аi образуют все A (т.е. ÈАi=А);

2) множества Аi попарно не пересекаются (т.е. для любых i¹j справедливо Аi Ç Aj = Æ).

Теорема о разбиении. Отношение I ÌА´А, будет отношением эквивалентности тогда и только тогда, когда существует разбиение А1, А2,..., Аn,... множества А, что из xIy следует существование такого Аi, что x, yÎАi.

Другими словами, отношение I является отношением эквивалентности в том и только в том случае, когда множество А можно разбить на пересекающиеся классы, в каждом из которых все элементы эквивалентны между собой. Такие классы называют классами эквивалентности или фактор-множествами.

Доказательство. Предположим, что I – отношение эквивалентности, т.е. оно является рефлексивным, симметричным, транзитивным. Наша задача – построить такое разбиение, чтобы между элементами каждого класса выполнялось отношение I. Введем для каждого xÎА множество Вx, состоящее из элементов эквивалентных х, т.е. Вx = {zÎA | xIz }.

Покажем, что два любых множества Bx и By либо совпадают, либо не пересекаются. Пусть zÎBx Ç By. Это означает, что одновременно zIx и zIy. Тогда, в силу симметричности и транзитивности, получаем xIy. Пусть теперь v – произвольный элемент из Bx, т.е. выполнено отношение vIx. Тогда, вследствие транзитивности отношения I и соотношения xIy, получим vIy, т.е. vÎBy. Точно также можно доказать, что если vÎBy, то vÎBx. Это означает, что всякий элемент v из Bx одновременно принадлежит и By и наоборот. Следовательно, два множества Bx и By, имеющие хотя бы один общий элемент, совпадают между собой.

Наконец, в силу того, что множества Bx построены для всех элементов х из A, и, в силу рефлексивности I, элемент х принадлежит своему множеству Bx, объединение Bx включает в себя все множество A. Это означает, что система {Bx} образует разбиение A, т.е. в одну сторону теорема доказана.

Докажем обратное. Пусть имеем разбиение множества А на непересекающиеся классы. Определим отношение I следующим образом: элемент x находится с элементом y в отношении I тогда и только тогда, когда они оба принадлежат одному классу. Тогда это отношение обладает свойством рефлексивности, т.к. сам элемент х принадлежит классу, элементом которого является.

Обладает отношение I и свойством симметричности, т.к. если x и y принадлежат какому-то классу, то это же можно сказать и про y и x.

Наконец, если имеют место отношения xIy и yIz, то это значит, что x, yÎB и y, zÎB, где B – какой-то класс. Таким образом, x, zÎB, т.е. между x и z установлено отношение I. Следовательно, I обладает транзитивностью. Значит, I – отношение эквивалентности. Теорема полностью доказана.

 

<== предыдущая лекция | следующая лекция ==>
Слабый порядок | Качественный порядок
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 690; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.