Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Однополосный гиперболоид вращения

Гиперболоид вращения – поверхность, образованная вращением прямой вокруг скрещивающейся с ней оси.

Линейчатая поверхность, которую необходимо построить, называется однополосным гиперболоидом вращения. Она образуется вращением прямой l вокруг скрещивающейся с ней оси i. Ближайшая к оси вращения точка образующей описывает наименьшую параллель – горло гиперболоида. Главный меридиан – гипербола.


Рис. 6.7

 

Эта поверхность может быть также получена вращением очерко­вой гиперболы вокруг своей мнимой оси i. Поверхность имеет два семейства прямолинейных образующих, т.к. через одну точку можно провести две прямые – восходящую прямую (как в данной задаче) и нисходящую прямую. Это видно, если касательно к горлу гиперболоида провести плоскость , параллельную оси вращения. Такая плоскость пересекает поверхность по двум прямым. Вторая восходящая прямая образует второе семейство образующих.

Если в центре горла гиперболоида построить конус с таким же углом наклона образующих, как у гиперболоида, то получим так называемый асимптотический конус, к которому поверхность приближается в бесконечности.


 

<== предыдущая лекция | следующая лекция ==>
Конус вращения. Цилиндрическая поверхность вращения – поверхность, образованная движением прямой линии параллельно оси | Лекция 9. Точка А располагается на параллели внешней части открытого тора, точка В лежит на внутренней параллели
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 730; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.