КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Обращение квадратных матриц
Квадратную матрицу будем называть вырожденной (особенной), если ее определитель равен нулю. Квадратную матрицу будем называть невырожденной, если ее определитель не равен нулю. Пусть дана квадратная матрица n -го порядка: . 3.1. Для того чтобы у квадратной матрицы существовала обратная матрица необходимо и достаточно, чтобы данная матрица была невырождена, при этом обратная матрица будет единственной и ее можно найти по формуле: .
Матрицу, расположенную в правой части этой формулы называют присоединенной к данной матрице А. Присоединенная матрица получается в результате замены всехееэлементовсвоими алгебраическими дополнениями и транспонированием вновь полученной матрицы. Следовательно, чтобы найти обратную матрицу для данной невырожденной квадратной матрицы, достаточно найти ее присоединенную матрицу и все ее элементы разделить на величину определителя данной матрицы. 3.2 Невырожденную квадратную матрицу будем называть о ртогональной, если при транспонировании получим обратную ей матрицу. . Для ортогональной матрицы А справедливы свойства: 3.2.1. . 3.2.2. . 3.2.3. Если матрицы А и В - ортогональны, то АТ, А-1, АВ - тоже ортогональны. 3.2.4. Если матрица А ортогональна и симметрична, то .
Дата добавления: 2014-01-11; Просмотров: 386; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |