Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Системы линейных уравнений

Чтобы его строки (либо столбцы) были линейно зависимы.

 

Пусть дана система, содержащая m линейных уравнений с n неизвестными:

5.1.

Введем следующие обозначения.

5.2. ,

- матрица системы - ее расширенная матрица.

- столбец свободных членов. - столбец неизвестных.

Если столбец свободных членов нулевой, то систему называют однородной.

Расширенная матрица 5.2. полностью задает систему 5.1.

Систему 5.1. можно задать также в виде матричного уравнения:

5.3. .

5.3.1. Система 5.1. и матричное уравнение 5.3. эквивалентны.

5.3.2. Теорема Кронекера-Капелли

Для того чтобы система 5.1. была разрешима, необходимо и достаточно, чтобы ранг расширенной

матрицы был равен рангу матрицы системы.

5.3.3. Если , то система имеет единственное решение.

5.3.4. Если , то система не имеет решений.

5.3.5. Однородная система всегда разрешима, причем линейная комбинация векторов, являющихся решениями

<== предыдущая лекция | следующая лекция ==>
Ранг матрицы. Пусть дана прямоугольная матрица : | Свободных неизвестных соответствует единственный набор базисных неизвестных
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 260; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.