Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свойства векторного произведения. 1.(критерий коллинеарности)

1. (критерий коллинеарности).

.◄

2. – антикоммутативность.

►а) .

б) . Кроме того, если , то существует плоскость P такая, что , поэтому , а значит, и . Итак, . Остается убедиться в сонаправленности этих векторов.

{– правая} левая} правая}

.

Таким образом, длины и направления векторов и совпадают, значит .◄

3. , .

4.

Эти два свойства мы докажем в § 7.

5. Линейные комбинации векторов векторно умножаются по правилу умножения многочленов. При этом не следует забывать, что сомножитель из первой скобки обязательно должен быть на первом месте.

Это свойство является следствием 3-го и 4-го.

Пример. ▼

.▲

6. Геометрический смысл векторного произведения: модуль векторного произведения неколлинеарных векторов численно равен площади параллелограмма, построенного на этих векторах, отложенных от одной точки.

7. Физический смысл векторного произведения. Моментом силы , приложенной к точке А, относительно точки О является вектор .

 

<== предыдущая лекция | следующая лекция ==>
Векторное произведение. Определение векторного произведения | Выражение векторного произведения через координаты перемножаемых векторов в ортонормированном базисе
Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 355; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.