КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Формула Тейлора
Примеры. 1. . 2. . 3. . 4. 5. Обозначим . Прологарифмируем это равенство . Найдем . Так как ln y функция непрерывная, то . Следовательно, или . Пусть функция y= f(x) задана на (a, b) и x 0 Î (a, b). Поставим следующую задачу: найти многочлен P(x), значения которого в окрестности точки x 0 приближенно совпадали бы со значениями функции f(x) в соответствующих точках. Тогда можно будет считать, что f(x)≈P(x) и задачу вычисления значений f(x) в окрестности точки x 0 можно заменить более легкой задачей вычисления значений P(x). Пусть искомый многочлен имеет степень n P(x) = P n (x). Будем искать его в виде
В этом равенстве нам нужно найти коэффициенты . Для того чтобы этот многочлен был "близок" к функции f(x) потребуем выполнения следующих равенств: Пусть функция y= f(x) имеет производные до n-ого порядка. Найдем коэффициенты многочлена P n(x) исходя из условия равенства производных. Введем обозначение n! = 1·2·3… n, 0! = 1, 1! = 1. Подставим в (1) x = x 0 и найдем , но с другой стороны . Поэтому Далее найдем производную и вычислим Следовательно, . Учитывая третье условие и то, что , получим , т.е. . Далее . Значит, , т.е. . Очевидно, что и для всех последующих коэффициентов будет верна формула Подставляя найденные значения коэффициентов в формулу (1), получим искомый многочлен: Обозначим и назовем эту разность n -ым остаточным членом функции f(x) в точке x 0. Отсюда и, следовательно, если остаточный член будет мал. Оказывается, что если x0 Î (a, b) при всех x Î (a, b) существует производная f (n+1)(x), то для произвольной точки x Î (a, b) существует точка, лежащая между x 0 и x такая, что остаток можно представить в виде: Это так называемая формула Лагранжа для остаточного члена. Формула где x Î (x 0, x) называется формулой Тейлора. Если в этой формуле положить x 0 = 0, то она запишется в виде где x Î (x 0, x). Этот частный случай формулы Тейлора называют формулой МакЛорена.
Дата добавления: 2014-01-13; Просмотров: 385; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |