Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Непрерывность функции

Рассмотрим функцию , определенную на промежутке Пусть . Функция называется непрерывной в точке , если

Функция называется непрерывной слева (справа) в точке , если . Естественно, при этом функция должна быть определена в некоторой окрестности слева (справа) то точки . Непрерывность функции в точке означает непрерывность этой функции в указанной точке как слева, так и справа.

Функция , определенная на интервале называется непрерывной на интервале , если она непрерывна в каждой точке этого интервала .

Функция , определенная на отрезке () называется непрерывной на отрезке , если она непрерывна в каждой точке интервала , непрерывна справа в точке и непрерывна слева в точке .

Общие свойства непрерывных функций, заданных на отрезке , определяются четырьмя теоремами: двумя теоремами Больцано–Коши и двумя теоремами Вейерштрасса.

Теорема (первая теорема Больцано–Коши). Пусть функция определена и непрерывна на отрезке , и на концах этого промежутка принимает значения разных знаков; тогда найдется точка , в которой функция равна нулю.

Теорема (вторая теорема Больцано–Коши). Пусть функция определена и непрерывна на отрезке . Тогда, если то функция принимает все свои промежуточные значения, принадлежащие промежутку , где , , т.е. .

Теорема (первая теорема Вейерштрасса). Пусть функция определена и непрерывна на отрезке , тогда функция является ограниченной на этом отрезке.

Теорема (вторая теорема Вейерштрасса). Пусть функция определена и непрерывна на отрезке , тогда функция имеет минимум и максимум на этом отрезке (множество значений функции включает в себя точные верхнюю и нижнюю границы).

 

Отметим прежде всего, что основные элементарные функции непрерывны во всех точках, в которых они определены. К основным элементарным функциям относятся:

1. Постоянная функция . Область определения .

2. Идентичная функция . Область определения .

3. Одночлен , .

4. Многочлен , .

5. Рациональная функция , где и ‑ многочлены. Функция определена при всех , кроме корней многочлена .

6. Степенная функция . Если , то функция определена по крайней мере на . При определена по крайней мере на . (При некоторых степенная функция может быть определена на более широком множестве. Например, функция имеет область определения . Функция определена на ).

7. Показательная функция , , . Определена на .

8. Логарифмическая функция , , . Определена на.

9. Синус , косинус определены на . Эти функции являются периодическими с периодом , т.е. , для любого из .

10. Арксинус и арккосинус определены на .

Если и ‑ непрерывные функции, то их сумма, разность и произведение являются непрерывными функциями. Частное непрерывных функций будет непрерывно всюду, где оно определено. Таким образом, можно утверждать, что всякая арифметическая комбинация непрерывных функций непрерывна всюду, где она определена.

<== предыдущая лекция | следующая лекция ==>
Бесконечные пределы | Непрерывность композиции
Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 328; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.