КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Интегрирование по частям. Если функции и дифференцируемы на множестве и, кроме того, на этом множестве существует интеграл
Если функции и дифференцируемы на множестве и, кроме того, на этом множестве существует интеграл , то на нем существует и интеграл , причем . Действительно, если проинтегрировать формулу нахождения дифференциала произведения двух функций , то можно получить следующее соотношение между первообразными от этих функций . Такой способ нахождения интеграла называется интегрированием по частям. Этот способ целесообразно применять, если интеграл, стоящий в правой части проще исходного. При использовании метода интегрирования по частям задана левая часть равенства, т.е. функция и дифференциал . Таким образом, выбор функций и неоднозначен, причем не каждый способ выбора этих функций ведет к упрощению первоначального интеграла. Функции, интегрируемые по частям, можно схематично разделить на три группы. 1. Интегралы, подынтегральная функция которых содержит в качестве множителя одну из следующих функций: , , , , , , при условии, что оставшаяся часть подынтегральной функции представляет собой производную известной функции. В случае если подынтегральная функция содержит в качестве множителя одну из перечисленных выше функций в степени , то операцию интегрирования по частям придется повторять раз. 2. Интегралы, подынтегральная функция которых содержит в качестве множителя одну из следующих функций: , , , a также, полином й степени Для вычисления интегралов второй группы нужно формулу интегрирования по частям применять раз, причем в качестве функции нужно брать многочлен соответствующей степени. После каждого интегрирования степень полинома будет понижаться на единицу. 3. Интегралы вида: ; ; . Применение формулы интегрирования по частям может привести к ситуации, когда интеграл в правой части и интеграл в левой части равенства совпадают, т.е. получается равенство вида: , где исходный интеграл; постоянная . В этом случае применение метода интегрирования по частям позволяет получить уравнение первого порядка для , из решения которого находится исходный интеграл : Причем метод интегрирования по частям может применяться многократно и любой из сомножителей можно всякий раз принимать за . Большое количество интегралов, не входящих в эти три группы, у которых невозможно выделить общий признак для группировки, также вычисляются методом интегрирования по частям. К таким интегралам можно отнести: , , , , и многие другие.
Дата добавления: 2014-01-13; Просмотров: 412; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |