Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Показатели работы отраслей




Модель Леонтьева многоотраслевой экономики

Лекция 6. Линейные экономические модели

Эффективное ведение народного хозяйства предполагает наличие баланса между отдельными отраслями.

Предположим, что вся производящая сфера народного хозяйства разбита на некоторое число n отраслей, каждая из которых производит свой продукт

Производственное потребление Конечное потребление Валовой выпуск

 

Балансовый характер этой таблицы выражается в том, что при любом i = l,..., n должно выполняться соотношение

xi = xi 1 + xi 2 +...+ xin + y i, (1)

означающее, что валовой выпуск xi расходуется на производственное потребление, равное x i1 + xi 2 +...+ xin, и непроизводственное потребление, равное уi. Будем называть (14) соотношениями баланса.

Единицы измерения всех указанных величин могут быть или натуральными (кубометры, тонны, штуки, киловатт-часы и т.п.), или стоимостными. В зависимости от этого различают натуральный и стоимостной межотраслевой балансы. Для определенности в дальнейшем будем иметь в виду (если не оговорено противное) стоимостной баланс.

В. Леонтьев, рассматривая развитие американской экономики в предвоенный период, обратил внимание на важное обстоятельство. А именно, величины остаются постоянными в течение ряда лет. Это обуславливается примерным постоянством используемой технологии.

В соответствии со сказанным сделаем такое допущение: для выпуска любого объема хj продукции отрасли j необходимо затратить продукцию отрасли i в качестве aij x j, где аij – постоянный коэффициент. Проще говоря, материальные издержки пропорциональны объему производимой продукции. Это допущение постулирует, как говорят, линейность существующей технологии. Принцип линейности распространяется и на другие виды на оплату труда, а также на нормативную прибыль. Итак, согласно гипотезе линейности имеем

xij = aij xj (i, j =1,..., n). (2)

Коэффициенты аij называют коэффициентами прямых затрат (коэффициент материалоемкости).

В предположении линейности соотношения (2) принимают вид:

x 1 = a 11 x 1 + a 12 x 2 + … + a 1 n xn + y 1

x 2 = a 21 x 1 + a 22 x 2 + … + a 2 n xn + y 2

…………………………………..

xn = an 1 x 1 + an 2 x 2 + … + ann xn + yn,

или, в матричной записи,

, (3)

где

 

Вектор называется вектором валового выпуска, вектор вектором конечного потребления, а матрица Аматрицей прямых затрат. Соотношение (3) называется уравнением линейного межотраслевого баланса. Вместе с изложенной интерпретацией матрицы А и векторов и это соотношение называют также моделью Леонтьева.

Уравнения межотраслевого баланса можно использовать для целей планирования. В этом случае задача ставится так: для предстоящего планового периода [ T 0, T 1] задается вектор конечного потребления. Требуется определить вектор валового выпуска. Проще говоря, нужно решить задачу: сколько следует произвести продукции различных видов, чтобы обеспечить заданный уровень конечного потребления? В этом случае необходимо решить систему линейных уравнений (3) с неизвестным вектором при заданных матрице А и вектору . При этом нужно иметь в виду следующие особенности системы (3):

1. Все компоненты матрицы А и вектора неотрицательны (это вытекает из экономического смысла А и ). Для краткости будем говорить о неотрицательности самой матрицы А и вектора и записывать это так: .

2. Все компоненты вектора также должны быть неотрицательными: .

Замечание. Обратим внимание на смысл коэффициентов аij прямых затрат в случае стоимостного (а не натурального) баланса. В этом случае из (16) видно, что aij совпадает со значением хij при xj = 1 (1 руб.).

Таким образом, аij есть стоимость продукции отрасли i, вложенной в 1 руб. продукции отрасли j. Отсюда, между прочим, видно, что стоимостной подход по сравнению с натуральным обладает более широкими возможностями, при таком подходе уже необязательно рассматривать «чистые», т. е. однопродуктовые, отрасли. Ведь и в случае многопродуктовых отраслей тоже можно говорить о стоимостном вкладе одной отрасли в выпуск 1 руб. продукции другой отрасли; скажем, о вкладе промышленной сферы в выпуск 1 руб. сельскохозяйственной продукции или о вкладе промышленной группы А (производство предметов потребления). Вместе с тем надо понимать, что планирование исключительно в стоимостных величинах может легко привести к дисбалансу потоков материально-технического снабжения.

Пример 1. Таблица содержит данные баланса трех отраслей промышленности за некоторый период времени. Требуется найти объем валового выпуска каждого вида продукции, если конечное потребление по отраслям увеличить, соответственно, до 60, 70и 30 условных денежных единиц.

 

 

Решение. Выпишем векторы валового выпуска и конечного потребления и матрицу коэффициентов прямых затрат. Согласно формуле (3), имеем:

, , .

Матрица А удовлетворяет обоим критериям продуктивности. В случае заданного увеличения конечного потребления новый вектор конечного продукта будет иметь вид

. (4)

Требуется найти новый вектор валового выпуска , удовлетворяющий соотношениям баланса в предположении, что матрица А не изменяется. В таком случае компоненты неизвестного вектора находятся из системы уравнений, которая в матричной форме имеет следующий вид:

, или . (5)

Матрица этой системы

.

Решение системы линейных уравнений (9.3) при заданном векторе пвой части (9.12) (например, методом Гаусса) дает новый вектор как решение уравнений межотраслевого баланса:

.

Таким образом, для того чтобы обеспечить заданное увеличение компонент вектора конечного продукта, необходимо увеличить соответствующие валовые выпуски: добычу и переработку углеводородов на 52,2 %, уровень энергетики – на 35,8 % и выпуск машиностроения – на 85 % – по сравнению с исходными величинами, указанными в табл. 10.

 




Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 627; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.