![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Булевы функции. Табличное задание функции
Табличное задание функции Как и бинарный закон композиции, однородная функция двух переменных может быть задана таблицей соответствия (матрицей), строки и столбцы которой соответствуют буквам алфавита. Таким способом можно представлять функции одной и двух переменных. Для представления функций трех и большего числа переменных потребовались бы трехмерные и, вообще, п -мерные таблицы. Этого можно избежать, если столбцы матрицы поставить в соответствие не буквам алфавита, а словам, т.е. образовать k столбцов. Для каждой функции отводится строка, клетки которой заполняются буквами из данного алфавита. Матрицавсех функций п переменных в k -значном алфавите содержит
Номера столбцов определяются расположенными над ними п -разрядными числами с основанием k, каждое из которых читается сверху вниз. Номера функций отождествляются с
Наиболее простым и в то же время важнейшим классом однородных функций являются двузначные (булевы) функции. Областью определения булевых функций от п переменных служит множество слов длины п. Они представляют собой всевозможные наборы из п двоичных цифр и их общее количество равно Число всевозможных булевых функций п переменных Общаятаблица соответствия для булевых функций одной переменной имеет следующий вид (справа указаны обозначения функций): Две функции Единственной нетривиальной функцией является Все 16 функций двух переменных приведены в табл. 9.1, где указаны условные обозначения, названия и значения функции (в скобках даны встречающиеся в литературе варианты). Шесть из приведенных функций не зависят от x 1 или x 2 (или от обоих вместе). Это две константы (
Таблица 9.1
Дата добавления: 2014-01-13; Просмотров: 367; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |