КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сохранность и синхронность во взаимодействиях
Связь посредством сообщений Лекция №13-14 Библиографический список 1. Таненбаум Э., ван Стеен М. Распределенные системы. Принципы и парадигмы. СПб.: Питер, 2003. — 877 с.
Вызовы удаленных процедур и обращения к удаленным объектам способствуют сокрытию взаимодействия в распределенных системах, то есть повышают прозрачность доступа. К сожалению, ни один из этих механизмов не идеален. В частности, в условиях, когда нет уверенности в том, что принимающая сторона в момент выполнения запроса работает, приходится искать альтернативные пути обмена. Кроме того, синхронную по определению природу RPC и RMI, при которой на время осуществления операции необходимо блокировать клиента, временами тоже хочется заменить чем-то другим. Это «что-то другое» — обмен сообщениями. В этом разделе мы сосредоточимся на использовании в распределенных системах взаимодействия на основе сообщений. Чтобы разобраться во множестве альтернатив в коммуникационных системах, работающих на основе сообщений, предположим, что система организована по принципу компьютерной сети, как показано на рис. 2.19. Приложения всегда выполняются на хостах, а каждый хост предоставляет интерфейс с коммуникационной системой, через который сообщения могут передаваться. Хосты соединены сетью коммуникационных серверов, которые отвечают за передачу (или маршрутизацию) сообщения между хостами. Без потери общности можно предположить, что каждый из хостов связан только с одним коммуникационным сервером. Обычно предполагают, что буферы могут быть размещены исключительно на хостах. Для более общего варианта нам следует рассмотреть варианты с размещением буферов и на коммуникационных серверах базовой сети.
Рис. 2.19. Обобщенная организация коммуникационной системы, хосты которой соединяются через сеть В качестве примера рассмотрим разработанную в подобном стиле систему электронной почты. Хосты работают как пользовательские агенты — это пользовательские приложения, которые могут создавать, посылать, принимать и читать сообщения. Каждый хост соединяется только с одним почтовым сервером, который является по отношению к нему коммуникационным сервером. Интерфейс пользовательского хоста разрешает пользовательскому агенту посылать сообщения по конкретным адресам. Когда пользовательский агент представляет сообщение для передачи на хост, хост обычно пересылает это сообщение на свой локальный почтовый сервер, в выходном буфере которого оно хранится до поры до времени. Почтовый сервер удаляет сообщение из своего выходного буфера и ищет, куда его нужно доставить. Поиски места назначения приводят к получению адреса (транспортного уровня) почтового сервера, для которого предназначено сообщение. Затем почтовый сервер устанавливает соединение и передает сообщение на другой, выбранный почтовый сервер. Последний сохраняет сообщение во входящем буфере намеченного получателя, также называемом почтовым ящиком получателя. Если искомый почтовый ящик временно недоступен, например, отключен, то хранить сообщение продолжает локальный почтовый сервер. Интерфейс принимающего хоста предоставляет пользовательским агентам службы, при помощи которых они могут регулярно проверять наличие пришедшей почты. Пользовательский агент может работать напрямую с почтовым ящиком пользователя на локальном почтовом сервере или копировать новые сообщения в локальный буфер своего хоста. Таким образом, сообщения обычно хранятся на коммуникационных серверах, но иногда и на принимающем хосте. Система электронной почты — это типичный пример сохранной связи (persistent communication). При сохранной связи сообщение, предназначенное для отсылки, хранится в коммуникационной системе до тех пор, пока его не удастся передать получателю. Если отталкиваться от рисунка, можно сказать, сообщение сохраняется на коммуникационном сервере до тех пор, пока его не удастся передать на следующий коммуникационный сервер. Поэтому у отправляющего сообщение приложения нет необходимости после отправки сообщения продолжать работу. Аналогично, у приложения, принимающего сообщения, также нет необходимости находиться в рабочем состоянии во время отправки сообщения. Система сохранной связи сравнима по принципу работы с почтовой системой Pony Express (рис. 2.20). Отправка письма начинается с доставки его в местное почтовое отделение. Почтовое отделение отвечает за сортировку почты в зависимости от того, в какое следующее почтовое отделение на пути к конечному пункту доставки ее нужно отправить. В нем также хранят соответствующие сумки с почтой, отсортированной по месту назначения, и ждут появления лошади со своим всадником. В пункте назначения письма вновь сортируются в зависимости от того, заберут ли их адресаты прямо здесь или нужно передать эти письма следующему почтальону. Отметим, что письма никогда не теряются и не пропадают. Несмотря на то что средства доставки, так же как и средства сортировки писем, за прошедшую сотню лет изменились, принципы сортировки, хранения и пересылки почты остались неизменными.
Рис. 2.20. Сохранная связь — доставка писем во времена Pony Express
В противоположность сохранной связи при нерезидентной связи (transient communication) сообщение хранится в системе только в течение времени работы приложений, которые отправляют и принимают это сообщение. Точнее говоря (если опять отталкиваться от рис. 2.20), мы имеем дело с такой ситуацией, когда коммуникационный сервер, не имея возможности передать сообщение следующему серверу или получателю, просто уничтожает его. Обычно все коммуникационные службы транспортного уровня поддерживают только нерезидентную связь. В этом случае коммуникационный сервер соответствует традиционному маршрутизатору «получил — передал». Если маршрутизатор не в состоянии переслать сообщение следующему маршрутизатору или принимающему хосту, сообщение просто теряется. Помимо сохранной и нерезидентной связи существует деление на синхронную и асинхронную связь. Характерной чертой асинхронной связи (asynchronous communication) является немедленное после отправки письма продолжение работы отправителя. Это означает, что письмо сохраняется в локальном буфере передающего хоста или на ближайшем коммуникационном сервере. В случае синхронной связи (synchronous communication) отправитель блокируется до того момента, пока его сообщение не будет сохранено в локальном буфере принимающего хоста или доставлено реальному получателю. Наиболее жесткая форма синхронного взаимодействия предполагает, что отправитель остается блокированным и на время обработки его сообщения получателем. На практике применяются различные комбинации этих типов взаимодействия. В случае сохранной асинхронной связи сообщение сохраняется в буфере либо локального хоста, либо первого коммуникационного сервера. Этот вид связи обычно используется в системах электронной почты. В случае сохранной синхронной связи сообщения хранятся только на принимающем хосте. Отправитель блокируется до момента сохранения сообщения в буфере получателя. Отметим, что приложение, принявшее сообщение, не обязано сохранять его на своем локальном хосте. «Усеченный» вариант сохранной синхронной связи состоит в том, что отправитель блокируется до момента сохранения сообщения на коммуникационном сервере, соединенном с принимающим хостом. Нерезидентная асинхронная связь характерна для служб дейтаграмм транспортного уровня, таких как UDP. Когда приложение отправляет сообщение, оно временно сохраняется в локальном буфере передающего хоста, после чего отправитель немедленно продолжает работу. Параллельно коммуникационная система направляет сообщение в точку, из которой, как ожидается, оно сможет достигнуть места назначения, возможно, с сохранением в локальном буфере. Если получатель в момент прихода сообщения на принимающий хост этого получателя неактивен, передача обрывается. Другой пример нерезидентной асинхронной связи — асинхронный вызов RPC. Нерезидентная синхронная связь существует в различных вариантах. В наиболее слабой форме, основанной на подтверждениях приема сообщений, отправитель блокируется до тех пор, пока сообщение не окажется в локальном буфере принимающего хоста. После получения подтверждения отправитель продолжает свою работу. В ориентированной на доставку нерезидентной синхронной связи отправитель блокируется до тех пор, пока сообщение не будет доставлено получателю для дальнейшей обработки. Мы рассматривали эту форму синхронного поведения при обсуждении асинхронных вызовов RPC. При асинхронных вызовах RPC клиент синхронизируется с сервером, ожидая, пока его запрос будет принят на дальнейшую обработку. Наиболее жесткая форма — ориентированная на ответ нерезидентная синхронная связь — предполагает блокировку отправителя до получения ответного сообщения с другой стороны, как в поведении запрос-ответ при взаимодействии клиент-сервер. Эта схема характерна также для механизмов RPC и RMI. Все сочетания сохранности и синхронности при взаимодействиях показаны на рис. 2.21. До недавнего времени множество распределенных систем поддерживали только ориентированную на ответ нерезидентную синхронную связь, реализованную через вызов удаленных процедур или через обращения к удаленным объектам. После того как стало ясно, что этот вид связи не всегда самый подходящий, были созданы средства для менее жестких форм нерезидентной синхронной связи, таких как асинхронные вызовы RPC или отложенные синхронные операции. В корне отличный подход применен в системах передачи сообщений, использующих как отправную точку нерезидентную асинхронную связь и в качестве дополнительной возможности содержащих средства синхронной связи. Однако во всех вариантах передачи сообщений взаимодействия также предполагаются прозрачными. Другими словами, задействуются только те средства связи, которые подходят для синхронных процессов. Ограничиваться исключительно этими средствами во многих случаях нереально, особенно если принять во внимание географическую масштабируемость.
Рис. 2.21. Шесть видов связи: сохранная асинхронная связь (а), сохранная синхронная связь (б), нерезидентная асинхронная связь (в), нерезидентная синхронная связь с синхронизацией по приему (г), нерезидентная синхронная связь с синхронизацией по доставке (д) и нерезидентная синхронная связь с синхронизацией по ответу (е)
Необходимость в службах сохранной связи стала очевидной, когда разработчикам программного обеспечения промежуточного уровня потребовалось интегрировать приложения в крупные и сильно разветвленные взаимосвязанные сети. Подобные сети часто разбросаны по различным подразделениям и административным зонам, части которых не всегда могут быть доступны немедленно. Например, доступ может быть ограничен по причине сбоев в сети или процессах. Для решения подобных проблем были разработаны частные решения на базе сохранной связи, но подобные решения, как легко понять, не вполне удовлетворяли требованиям переносимости и работоспособности в разных условиях. Другим недостатком нерезидентной связи можно считать тот факт, что в случае возникновения ошибки необходимо немедленно замаскировать ее и запустить процедуру восстановления. Невозможность отложить восстановление в данном случае означает нарушение прозрачности по отказам. В случае же сохранной связи приложение разрабатывается в расчете на длительные задержки между посылкой сообщения и получением ответа на него. Соответственно, мы можем прибегнуть к несложным, хотя возможно и медленным способам маскировки ошибок и восстановления. Должно быть понятно, что выбор исключительно между нерезидентным и сохранным типами связи во многих случаях неприемлем. Аналогично, только синхронный и асинхронный типы связи — это еще не все. В зависимости от задач распределенной системы ей могут потребоваться все возможные типы связи. Ранее мы говорили в основном о нерезидентной синхронной связи — RPC и RMI. Другие формы взаимодействия, как правило, представлены системами, работающими на основе передачи сообщений.
Дата добавления: 2014-01-13; Просмотров: 1165; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |