КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Статическое и динамическое удаленное обращение к методам
Сохранные и нерезидентные объекты Помимо деления на объекты, зависящие от языка программирования, и объекты времени выполнения существует также деление на сохранные и нерезидентные объекты. Сохранный объект (persistent object) — это объект, который продолжает существовать, даже не находясь постоянно в адресном пространстве серверного процесса. Другими словами, сохранный объект не зависит от своего текущего сервера. На практике это означает, что сервер, обычно управляющий таким объектом, может сохранить состояние объекта во вспомогательном запоминающем устройстве и завершить свою работу. Позже вновь запущенный сервер может считать состояние объекта из запоминающего устройства в свое адресное пространство и обработать запрос на обращение к объекту. В противоположность ему, нерезидентный объект (transient object) — это объект, который существует, только пока сервер управляет им. Когда сервер завершает работу, этот объект прекращает существовать. Использовать сохранные объекты или нет — это спорный вопрос. Некоторые полагают, что нерезидентных объектов вполне достаточно. После того как клиент свяжется с объектом, он может через заместителя обратиться к методам объекта. Подобное удаленное обращение к методам (Remote Method Invocation, RMI) в части маршалинга и передачи параметров очень напоминает RPC. Основное различие между RMI и RPC состоит в том, что RMI, как говорилось ранее, в основном поддерживает внутрисистемные ссылки на объекты. Кроме того, отпадает необходимость в клиентских и серверных заглушках общего назначения. Вместо них мы можем использовать значительно более удобные в работе и специфические для объектов заглушки, которые мы также обсуждали. Стандартный способ поддержки RMI — описать интерфейсы объектов на языке определения интерфейсов, так же как в RPC. Однако с тем же успехом мы можем использовать объектный язык, например Java, который обеспечивает автоматическую генерацию заглушек. Такой подход к применению предопределенных определений интерфейсов часто называют статическим обращением (static invocation). Статическое обращение требует, чтобы интерфейсы объекта при разработке клиентского приложения были известны. Также оно предполагает, что при изменении интерфейса клиентское приложение перед использованием новых интерфейсов будет перекомпилировано. В качестве альтернативы обращение к методам может осуществляться более динамичным образом. В частности, иногда удобнее собрать параметры обращения к методу во время исполнения. Этот процесс известен под названием динамического обращения (dynamic invocation). Основное его отличие от статического обращения состоит в том, что во время выполнения приложение выбирает, какой метод удаленного объекта будет вызван. Динамическое обращение обычно выглядит следующим образом:
invoke(object, method, input_parameters, output_parameters);
Здесь object идентифицирует распределенный объект; method — параметр, точно задающий вызываемый метод; input_parameters — структура данных, в которой содержатся значения входных параметров метода; output_parameters — структура данных, в которой хранятся возвращаемые значения. В качестве примера рассмотрим добавление целого числа int к объекту fobject файла. Для этого действия объект предоставляет метод append. В этом случае статическое обращение будет иметь вид:
fobject.append(int);
Динамическое обращение будет выглядеть так:
invoke(fobject, id(append), int);
Здесь операция id(append) возвращает идентификатор метода append. Для иллюстрации динамического обращения рассмотрим браузер объектов, используемый для просмотра наборов объектов. Предположим, что этот браузер поддерживает удаленное обращение к объектам. Это будет означать, что браузер в состоянии выполнить привязку к распределенному объекту и предоставить пользователю интерфейс с объектом. Пользователю после этого может быть предложено выбрать метод и ввести значения его параметров, после чего браузер сможет произвести действительное обращение. Обычно подобные браузеры объектов разрабатываются так, чтобы они поддерживали любые возможные интерфейсы. Такой подход требует исследования интерфейсов во время выполнения и динамического создания обращений к методам. Другая область применения динамических обращений — службы пакетной обработки, для которых запросы на обращение могут обрабатываться в течение всего того времени, пока обращение ожидает выполнения. Служба может быть реализована в виде очереди запросов на обращение, упорядоченных по времени поступления. Основной цикл службы просто ожидает назначения очередного запроса, удаляет его из очереди и, как это было показано ранее, вызывает процедуру invoke.
Дата добавления: 2014-01-13; Просмотров: 545; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |