Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример 1. Чему равно ускорение Луны и ка­ково отношение этого ускорения к ускорению свободного падения на поверхности Земли?




Чему равно ускорение Луны и ка­ково отношение этого ускорения к ускорению свободного падения на поверхности Земли?

Решение: Используя формулу для центро­стремительного ускорения, находим, что уско­рение Луны , где R -расстоя­ние от Земли до Луны, равное 3,86 • 105 км. Период обращения Луны вокруг Земли T = 27,3 суток или 2,36 -106 с. Подставляя эти зна­чения в выражение для а, имеем а = 2,73-10-3 м/с2.

Вблизи поверхности Земли ускорение равно g = 9,8 м/с2.

Таким образом, отно­шение а/g = 1/3590 = (1/60)2.

 

Ньютон выполнил простые вычисле­ния, близкие к описанным в примере 1, и обнаружил, что сила тяготения, дей­ствующая со стороны Земли на яблоко, удаленное к Луне, уменьшится в 3600 = (60)2 раз, что соответствует отношению квадратов расстояний.

Отсюда Ньютон за­ключил, что сила тяготения между двумя телами должна убывать обратно пропор­ционально квадрату расстояния между ни­ми.

Он предложил универсальный закон гравитационного притяжения между любыми двумя телами:

Для обозначения коэффициента пропор­циональности используется прописная буква G. Таким образом,

 

Пример 2.

Предположив, что средняя плотность Земли равна ρ = 5 • 103 кг/м3, Ньютон нашел численное значение G. (Его догадка с точностью 10% совпала с истинным значением.) Получите выражение для G через ρ, rз и g.

Решение: Применим формулу (5-1)

 

к силе, дей­ствующей между Землей и яблоком.

Обозначим массу Земли М з,

а массу яблока т.

 

Тогда

F = G Мз т/ r2.

Полагая r равным расстоянию rз между цент­ром Земли и яблоком, имеем

F= G Мз т / rз 2.

В соответствии со вторым законом Ньютона эта сила должна равняться та, причем в нашем случае а = g. Таким образом,

G Мзт / rз 2 = mg,

откуда

G=gR2з /Mз.

Учитывая, что Mз равна произведению плотно­сти на объем, т. е.

М з = ρ (4/3) π R3з, получаем

G= 3gR2з / 4ρ π R3з = 3g / 4ρ π Rз

Подставляя сюда Rз = 6,37-106 м и ρ = 5 х 103 кг/м3, имеем

G = 7,35- 10-11 Н -м2 •кг -2,

что всего лишь на 10% превышает принятое значение

 

G = 6,67. 10-11 Н -м2 •кг -2

Сравнивая ускорение свободного паде­ния на Луне с величиной этого ускорения на поверхности Земли, Ньютон предполо­жил, что Земля ведет себя так, как если бы вся ее масса была сконцентрирована в центре. Ньютон догадался, что такое по­ведение справедливо в случае сил, изме­няющихся обратно пропорционально ква­драту расстояния. Однако ему удалось получить строгое доказательство лишь 20 лет спустя.

 

«Взвешивание –Земли»

Тяготение действует на огромных рас­стояниях.

Но закон Ньютона утверждает, что взаимно притягива­ются все предметы.

А правда ли, что любые два предмета, притягивают друг друга?

Можем ли мы сами поставить та­кой опыт, а не гадать, глядя на небо, притягиваются ли планеты?

Такой прямой опыт сделал Кавендиш (1731 —1810) при по­мощи прибора, который показан на рис. 11. Идея состояла в том, чтобы подвесить на очень тонкой кварцевой нити стержень с двумя шарами и затем поднести к ним сбоку два больших свинцовых шара, как показано на рисунке. При­тяжение шаров слегка перекрутит нить — слегка, потому что силы притяжения между обычными предметами очень слабы. Силу притяжения между двумя шарами можно из­мерить. Кавендиш назвал свой опыт «взвешиванием Земли».

Педантичный и осторожный преподаватель наших дней не позволит студентам так выразиться; нам пришлось бы ска­зать «измерение массы Земли». При помощи такого прибора Кавендишу удалось непосредственно измерить силу, рас­стояние и величину обеих масс и, таким образом, опреде­лить постоянную тяготения G.

Вы скажете: «Взвешивание Земли представляет собой почти такую же задачу. Мы знаем силу притяжения, знаем массу объекта, который притя­гивается, и знаем, насколько он удален, но мы не знаем ни массы Земли, ни постоянной тяготения, а только их произведение».

Измерив постоянную и зная, как Земля притя­гивает предметы, мы сможем вычислить ее массу.

 

Рис. 11

 

Этот опыт впервые позволил косвенно определить, на­сколько тяжел, массивен шар, на котором мы живем. Ре­зультат его невольно вызывает удивление, и именно поэтому Кавендиш назвал свой опыт «взвеши­ванием Земли», а не «опре­делением постоянной урав­нения тяготения».

 




Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 1587; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.