КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Особенности строения полупроводников
Твердые вещества по их способности проводить электрический ток делятся на три группы: проводники (металлы), диэлектрики (изоляторы) и полупроводники. По способности проводить электрический ток и зависимости электропроводности от температуры полупроводники значительно ближе к диэлектрикам, чем к проводникам. Причины такого сходства диэлектриков и полупроводников кроются в построении их атомной структуры. Атом вещества состоит из ядра и перемещающихся вокруг него электронов. Ядро имеет положительный заряд, а электроны — отрицательный. Электроны в атоме группируются в оболочки, находящиеся на некоторых расстояниях от ядра. Электроны внешней оболочки связаны с ядром значительно слабее электронов внутренних оболочек. Такие электроны называются валентными, и они обеспечивают соединение атомов в молекулы или кристаллы. В проводниках электронные оболочки атомов сильно перекрываются и валентные электроны перестают быть жестко связанными с какими-либо определенными атомами. Такие электроны могут свободно перемещаться в объеме вещества, совершая при отсутствии внешнего электрического поля хаотическое тепловое движение. При наличии внешнего электрического поля эти электроны получают некоторое поступательное движение, которое называют их дрейфом. Дрейф отрицательно заряженных электронов происходит в направлении, обратном направлению силовых линий электрического поля, и образует электрический ток. Число свободных электронов в металлах достаточно велико и практически не зависит от температуры. Однако с повышением температуры увеличивается число столкновений электронов при их тепловом перемещении, и электропроводность металлов понижается. В диэлектриках электроны внешней оболочки достаточно жестко связаны с ядром и не могут свободно перемещаться даже при повышении температуры. В связи с этим внешнее электрическое поле не приводит к появлению в диэлектриках заметного электрического тока. Однако при высокой напряженности электрического поля может произойти отрыв валентных электронов и их лавинное размножение, которое называется пробоем диэлектрика. Химически чистые полупроводники при температуре абсолютного нуля ведут себя так же, как диэлектрики, и их электропроводность равна нулю. Однако с повышением температуры тепловые колебания атомов полупроводников приводят к увеличению энергии валентных электронов, которые могут оторваться от атомов и начать свободное перемещение. Поэтому при нормальной комнатной температуре полупроводники в отличие от диэлектриков имеют некоторую электропроводность. С повышением температуры растет число оторвавшихся электронов, поэтому электропроводность полупроводников повышается. Такую электропроводность полупроводников, связанную с нарушением валентных связей, называют их собственной проводимостью. На электропроводность полупроводников большое влияние оказывают примеси. Приналичии примесей происходит появление избыточных валентных электронов, которые легко освобождаются от атомов и превращаются в свободные заряды. Следует отметить, что содержание примесей может быть весьма незначительным, однако повышение электропроводности при этом может быть весьма существенным. Так, например, для германия наличие всего 0,001% примесей приводит к увеличению электропроводности в 104 раз. Электропроводность полупроводников, обусловленную наличием примесей, называют его примесной проводимостью. Примесная проводимость полупроводников может во много раз превышать их собственную проводимость. В соответствии с зонной теорией твердого тела электроны, связанные с изолированным атомом, могут иметь только определенные дискретные уровни энергии и, следовательно, могут занимать только дискретные орбиты, между которыми располагаются зоны запрещенных энергий. В запрещенные зоны входят такие уровни энергий, которые электроны принимать не могут. Шириной запрещенной зоны называется уровень энергии ΔW между двумя соседними разрешенными зонами. На рис. 1д. 1 приведена энергетическая диаграмма полупроводника, в которой последняя разрешенная полностью занятая зона называется валентной, а первая разрешенная свободная зона называется зоной проводимости. Между этими двумя разрешенными зонами располагается запрещенная зона с шириной ΔW. Внутри разрешенных зон энергетические уровни располагаются так близко, что можно считать их практически непрерывными. Это позволяет вместо линейчатого энергетического спектра электронов атома рассматривать спектр энергетических зон, в котором чередуются разрешенные и запрещенные зоны ΔW. При этом Электрон может перейти из валентной зоны в зону проводимости, если он получит дополнительную энергию, превышающую ширину запрещенной зоны. По значениям ширины запрещенной зоны все вещества также можно разделить на диэлектрики, полупроводники и проводники. Если ширина запрещенной зоны больше 3 эВ, то вещество относится к диэлектрикам. Если ширина запрещенной зоны меньше 3 эВ, то вещество считается полупроводником. У проводников запрещенная зона отсутствует совсем. Среди различных полупроводников в электронной технике наиболее широкое применение нашли три вещества: германий, кремний и арсенид галлия. Их основные свойства приведены в табл. 1д. 1. Из этой таблицы следует, что наименьшее значение ширины запрещенной зоны имеет германий, а наибольшее значение — арсенид галлия. Кремний занимает промежуточное положение. Применение германия ограничено малой шириной запрещенной зоны, что приводит к большому току утечки при повышении температуры. Наиболее широкое распространение в полупроводниковой электронике получил кремний, который имеет умеренно широкую запрещенную зону и высокую температуру плавления. Самую широкую запрещенную зону имеет арсенид галлия. Он также имеет высокую подвижность носителей зарядов и высокую температуру плавления. Главным недостатком арсенида галлия является малое время жизни неосновных носителей зарядов. -
Германий и кремний относятся к элементам четвертой группы периодической системы элементов Д. И. Менделеева. Атомы этих элементов имеют по четыре валентных электрона. Арсенид галлия GaAs состоит из соединения элементов третьей группы Ga и пятой группы As. Так как атомы третьей группы имеют три валентных электрона, а атомы пятой группы — пять, то среднее число валентных электронов у этого соединения тоже четыре.
Дата добавления: 2014-01-13; Просмотров: 3156; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |