КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Третья ЧАСТЬ ЖБК. Краткий курс лекций
Лекция 1
Железобетонные конструкции промышленных и гражданских зданий и сооружений. Общие принципы проектирования железобетонных конструкций. Деформационные швы. Конструктивные схемы зданий, общие принципы компоновки. Системы связей.
1. Конструктивные схемы Конструкции промышленных и гражданских зданий состоят из отдельных элементов, связанных в единую систему. Здание в целом должно надежно сопротивляться деформированию в горизонтальном направлении от действия различных нагрузок и воздействий, т. е. должно обладать достаточной пространственной жесткостью. При загружении одного из элементов здания в работу включаются и другие элементы, происходит пространственная работа. Отдельные элементы зданий — плиты и балки перекрытий, колонны, стены и др.— должны обладать прочностью и устойчивостью, достаточной жесткостью и трещиностойкостью и участвовать в общей работе здания. Конструктивные схемы зданий, могут быть каркасными и панельными (бескаркасными), многоэтажными и одноэтажными. Каркас многоэтажного здания образуется из основных вертикальных и горизонтальных элементов — колонн и ригелей (рис. Х.1). В каркасном здании горизонтальные воздействия (ветер, сейсмика и т. п.) могут восприниматься совместно каркасом и вертикальными связевыми диафрагмами, соединенными перекрытиями в единую пространственную систему, или же только каркасом, как рамной конструкцией, при отсутствии вертикальных диафрагм. В многоэтажном панельном здании горизонтальные воздействия воспринимаются совместно поперечными и продольными стенами, также соединенными перекрытиями в пространственную систему. Каркас одноэтажного здания образуется из колонн, заделанных в фундамент, и ригелей, шарнирно или жестко соединенных с колоннами.
2. Деформационные швы В большинстве случаев железобетонные конструкции представляют собой статически неопределимые системы, и поэтому от изменения температуры, усадки бетона, а также от неравномерной осадки фундаментов в них возникают дополнительные усилия, что может привести к появлению трещин или к разрушению части конструкции. Чтобы уменьшить усилия от температуры и усадки, железобетонные конструкции делят по длине и ширине температурно-усадочными швами на отдельные части — деформационные блоки. Если расстояние между температурно-усадочными швами при температуре выше минус 40°С не превышает пределов, указанных в табл. Х.1, то конструкции без предварительного напряжения, а также предварительно напряженные, к трещиностойкости которых предъявляются требования 3-й категории, на температуру и усадку можно не рассчитывать. Для железобетонных конструкций одноэтажных каркасных зданий допускается увеличивать расстояния между температурно-усадочными швами на 20 % сверх значений, указанных в таблице. Расстояния между температурными швами, указанные в таблице, допустимы при расположении вертикальных связей каркасных зданий в середине деформационного блока. Если же связи расположены по краям деформационного блока, то работа здания при температурно-усадочных деформациях приближается по характеру к работе сплошных конструкций Рис. Х.1. Железобетонный каркас многоэтажного здания Таблица Х.1.
Наибольшие допустимые расстояния между температурно-усадочными швами в железобетонных конструкциях . Температурно-усадочные швы выполняются в надземной части здания — от кровли до верха фундамента, разделяя при этом перекрытия и стены. Ширина температурно-усадочных швов обычно составляет 2—3 см, она уточняется расчетом в зависимости от длины температурного блока и температурного перепада. Наиболее четкий температурно-усадочный шов конструкции здания создается устройством парных колонн и парных балок по ним (рис. Х.2, а). Осадочные швы устраивают между частями зданий разной высоты или в зданиях, возводимых на участке с разнородными грунтами; такими швами делят и фундаменты (рис. Х.2, б). Осадочные швы можно устраивать также с помощью вкладного пролета из плит и балок (рис. Х.2,в). Осадочный шов служит одновременно и температурно-усадочным швом здания.
Рис. Х.2. Деформационные швы а — температурный шов на парных колоннах; б — осадочный шов на парных колоннах; в — осадочный шов с вкладным пролетом
§ Х.2. ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ СБОРНЫХ ЭЛЕМЕНТОВ
1. Типизация сборных элементов Производство сборных железобетонных элементов наиболее эффективно в том случае, когда на заводе изготовляют серии однотипных элементов. Технологический процесс при этом совершенствуется, снижается трудоемкость изготовления и стоимость изделий, улучшается их качество. Отсюда вытекает важнейшее требование, чтобы число типов элементов в здании было ограниченным, а применение их — массовым (для возможно большего числа зданий различного назначения). С этой целью типизируют элементы, т. е. для каждого конструктивного элемента здания отбирают наиболее рациональный, проверенный на практике, тип конструкции с наилучшими по сравнению с другими решениями технико-экономическими показателями (расход материалов, масса, трудоемкость изготовления и монтажа, стоимость). Выбранный таким образом тип элемента принимается для массового заводского изготовления.
2. Унификация размеров и конструктивных схем зданий Чтобы одни и те же типовые элементы можно было широко применять в различных зданиях, расстояния между колоннами в плане (сетка колонн) и высоты этажей унифицируют, т. е. приводят к ограниченному числу размеров. Основой унификации размеров служит единая модульная система, предусматривающая градацию размеров на базе модуля 100 мм или укрупненного модуля, кратного 100 мм. Для одноэтажных промышленных зданий с мостовыми кранами расстояние между разбивочными осями в продольном направлении (шаг колонн) принято равным 6 или 12 м, а между разбивочными осями в поперечном направлении это расстояние (пролеты здания) принято кратным укрупненному модулю 6 м, т. е. 18, 24, 30 м и т. д. (рис. Х.З, а). Высота от пола до низа основной несущей конструкции принята кратной модулю 1,2 м, например 10,8; 12 м и т. д. до 18 м. Рис. Х.З. Унифицированные размеры промышленных зданий Рис. Х.4. Номинальные и конструктивные размеры сборных элементов а — панелей; б — ригелей
Дата добавления: 2014-01-14; Просмотров: 1764; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |