КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Определение усилий в колоннах от нагрузок
Расчетная схема и нагрузки
Поперечная рама одноэтажного каркасного здания испытывает действие постоянных нагрузок от массы покрытия и различных временных нагрузок от снега, вертикального и горизонтального давления мостовых кранов, положительного и отрицательного давления ветра и др. (рис. XIII.19,а). В расчетной схеме рамы соединение ригеля с колонной считается шарнирным, а соединение колонны с фундаментами — жестким. Длину колонн принимают равной расстоянию от верха фундамента до низа ригеля. Цель расчета поперечной рамы — определить усилия в колоннах и подобрать их сечения. Ригель рамы рассчитывают независимо как однопролетную балку, ферму или арку. Постоянная нагрузка от массы покрытия передается на колонну как вертикальное опорное давление ригеля F. Эту нагрузку подсчитывают по соответствующей грузовой площади. Вертикальная нагрузка приложена по оси опоры ригеля и передается на колонну при привязке наружной грани колонны к разбивочной оси 250 мм с эксцентриситетом:
Рис. X1I1.I9. Расчетно-конструктивная схема поперечной рамы с крановыми нагрузками
в верхней надкрановой части е=0,25/2 =0.125 (при нулевой привязке е=0); в нижней подкрановой части e=(h1—h2)/2—0,125 (при нулевой привязке e=(hl—h2/2); при этом возникают моменты, равные M=Fe. Временная нагрузка от снега устанавливается в соответствии с географическим районом строительства и профилем покрытия. Она также передается на колонну как вертикальное опорное давление ригеля F и подсчитывавается по той же грузовой площади, что и нагрузка от массы покрытия. Временная нагрузка от мостовых кранов определяется от двух мостовых кранов, работающих в сближенном положении. Коэффициент надежности для определения расчетных значений вертикальной и горизонтальной нагрузок от мостовых кранов γf=1,1. Вертикальная нагрузка на колонну вычисляется по линиям влияния опорной реакции подкрановой балки, наибольшая ордината которой на опоре равна единице. Одна сосредоточенная сила от колера моста устанавливается на опоре, остальные силы располагаются в зависимости от стандартного расстояния между колесами крана (рис. XIII. 19,б). Максимальное давление на колонну при этом давление на колонну на противоположной стороне Вертикальное давление от кранов передается через подкрановые балки на подкрановую часть колонны с эксцентриситетом, равным для крайней колонны е=0,25 +λ—0,5 hн„ (при нулевой привязке е=λ,—0,5 hн), для средней колонны е=λ (рис. XIII.19,в). Соответствующие моменты от крановой нагрузки Горизонтальная нагрузка на колонну от торможения двух мостовых кранов, находящихся в сближенном положении, передается через подкрановую балку по тем же линиям влияния, что и вертикальное давление: Временная ветровая нагрузка. В зависимости от географического района и высоты здания устанавливают значение ветрового давления на 1 м2 поверхности стен и фонаря.
С наветренной стороны действует положительное давление, с подветренной - отрицательное. Стеновые панели передают ветровое давление на колонны в виде распределенной нагрузки p= ωa, где а — шаг колонн. Неравномерную по высоте здания ветровую нагрузку приводят к равномерно распределенной, эквивалентной по моменту в заделке консоли. Ветровое давление, действующее на фонарь и часть стены, расположенную выше колонн, передается в расчетной схеме в виде сосредоточенной силы W. 2. Пространственная работа каркаса здания при крановых нагрузках Покрытие здания из железобетонных плит, соединенных сваркой закладных деталей и замоноличиванием швов, представляет собой жесткую в своей плоскости горизонтальную связевую диафрагму. Колонны здания, объединенные горизонтальной связевой диафрагмой в поперечные и продольные рамы, работают как единый пространственный блок. Размеры такого блока в плане определяются расстояниями между температурными швами (рис. XIII.20,а).
Нагрузки от массы покрытия, снега, ветра приложены повременно ко всем рамам блока, при этих нагрузках пространственный характер работы каркаса здания не проявляется и каждую плоскую раму можно рассчитывать в отдельности. Нагрузки же от мостовых кранов приложены лишь к двум-трем рамам блока, но благодаря горизонтальной связевой диафрагме в работу включается остальные рамы блока, происходит пространственная работа. Если учитывать пространственную работу рам лишь одного поперечного направления, то в упрощенном решении поперечную раму можно рассчитывать на крановые нагрузки с учетом пространственной работы каркаса здания методом перемещений с введением к реакции от единичного смещения поперечной рамы коэффициента Сdim, равном при (шаге колонн 12 м Сdim=3,4; прн шаге 6м Cdim = 4. Для расчета поперечной рамы на различные нагрузки и воздействия наиболее удобен метод перемещений с одним неизвестным ∆— горизонтальным перемещением плоской загружаемой рамы. Вводя по направлению неизвестного перемещения стерженек-связь, получим основную систему (рис. ХШ.22, а). Основную систему подвергают единичному воздействию неизвестного, при этом в rолоннах возникают реакции R∆ и изгибающие моменты |рис. ХШ.22, б). Затем основную систему последовательно загружают постоянными и временными нагрузками F, M, Н, р, которые вызывают в стойках соответствующие реакции и изгибающие моменты (рис. ХШ.22, в-д). Значение реакций R в ступенчатых колоннах переменного сечения при неподвижной верхней опоре могут быть определены по формулам, приведенным в приложении XII. В уравнении приняты обозначения: r11 — реакция поперечной рамы от единичного перемещения;R1p=∑R— сумма реакций верха колонн от нагрузки; положительные реакции направлены в сторону неизвестного перемещения.
Рис. XIII.22. Основная система поперечной рамы и эпюры момента от ветрового воздействия и нагрузок
Рис. XIII.23. К расчету двухъярусной поперечной рамы а — конструктивная схема; б — расчетные схемы
Коэффициент Cdim для различных загружений поперечной рамы, кроме загружения крановой нагрузкой, равен единице. Из уравнения находят неизвестное∆, а затем упругую реакцию При числе пролетов рамы, равном трем и более, верхнюю опору колонн при действии крановых нагрузок рассматривают как неподвижную и принимают ∆=0. Для рамы с двухъярусным ригелем при жесткости внутренних колонн В1 превышающих жесткость наружных колонн В2, так что В1≥5В2, в качестве расчетной схемы средней высокой части может быть принята независимая однопролетная рама (рис. XIII.23). Эту раму также рассчитывают с учетом пространственной работы каркаса. Изгибающие моменты и поперечные силы в сечениях колонны определяют как в консольной балке, загруженной внешней нагрузкой и реакцией Re. Обычно расчетными являются три основных сечения по длине колонны: 1-0 - над крановой консолью; 1-2 - под крановой консолью; 2-1 - в основании. Эпюры моментов строят для каждого вида нагрузки, Действующей на раму. Затем составляют таблицу усилий М, N, Q, и в расчетных сечениях колонны устанавливают расчетные сочетания усилий или нагрузок. Постоянная нагрузка на колонны участвует во всех сочетаниях, временные нагрузки — в невыгоднейших. Согласно нормам, временные нагрузки (снег, ветер, мостовые краны), действующие на поперечную раму, относятся к кратковременным. При расчете поперечной рамы на основные сочетания нагрузок, включающие одну кратковременную нагрузку, значение которой учитывают без снижения, а при расчете на основные сочетания, включающие две или три кратковременные нагрузки, расчетные значения этих нагрузок или соответствующих им усилий умножают на коэффициент сочетаний 0,9. При этом за одну кратковременную нагрузку следует считать нагрузку от действия двух кранов на одном пути, умноженную на коэффициент 0,85 для кранов легкого и среднего режимов, или же нагрузку от четырех кранов, совмещенных в одном створе разных пролетов, умноженную на коэффициент 0,7. Сечения колонн поперечной рамы рассчитывают с учетом влияния прогиба на значение эксцентриситета продольной силы. Колонны из плоскости поперечной рамы. Проверяют на устойчивость как сжатые элементы. Кроме того, колонны проверяют на усилия, возникающие при транспортировании и монтаже. Расчетная длина lо сборных железобетонных колонн зданий с мостовыми кранами для подкрановой (нижней) части и надкрановой (верхней) части в плоскости поперечной рамы и из плоскости поперечной рамы различная т устанавливается согласно табл. XIII.1. Расчетная длина сборных железобетонных колонн зданий без мостовых кранов однопролетных lo=l,5 H, многопролетных lo =1,2 Н.
Таблица XI11.1. Расчетная длина l0 сборных железобетонных колонн зданий с мостовыми кранами
Рис. XII 1.24. Схемы армирование консолей колонн а - наклонными хомутами; б - горизонтальными хомутами и отгибами
Короткие консоли (рис. XIII.24) колонн, поддерживающие подкрановые балки, рассчитывают на действия поперечной силы из условия (XI.20), а также из условия в котором правая часть неравенства принимается не более 2,5Rbtbho; φ =0,75 - при кранах тяжелого режима работы
φ= 1 — при кранах среднего и легкого режимов работы. Короткими считаются консоли, у которых вылет lk≤0,9h0. Угол наклона сжатой грани консоли с горизонтальной линией должен быть γ≤45°, а высота сечения консоли у свободного края должна быть h1≥h/2 (где h — высота опорного сечения). Армируют консоли наклонными хомутами при h≤2,5, Горизонтальными хомутами и отгибами — при h>2,5 а. Отогнутые стержни допускается не ставить, если h>3,5 а и Q≤Rbtbh0. Во всех случаях расстояние между хомутами должно быть не более 150 мм и не более h/4; диаметр отогнутых стержней должен быть не более 1/15 длины отгиба и не более 25 мм. Суммарное сечение отгибов и наклонных хомутов, пересекающих верхнюю половину линии, соединяющей крайние точки в пределах Площадь сечения продольной арматуры консоли Аs, подбирают по увеличенному на 25 % изгибающему моменту, действующему в месте примыкания консоли к колонне. Продольная арматура снабжена на конце приваренными анкерами в виде шайб или уголков.
Дата добавления: 2014-01-14; Просмотров: 5447; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |