КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 14. Бесконечно малые функции и их свойства
Бесконечно малые функции и их свойства. Основные теоремы о пределах. Замечательные пределы. Натуральный логарифм и гиперболические функции.
Определение 14.1. Функция у=α(х) называется бесконечно малой при х→х0, если Свойства бесконечно малых.
Доказательство. Если α(х) и β(х) – бесконечно малые при х→х0, то существуют δ1 и δ2 такие, что | α(x)|<ε/2 и |β(x)|<ε/2 для выбранного значения ε. Тогда | α(x)+β(x)|≤|α(x)|+|β(x)|<ε, то есть |(α(x)+β(x))-0|<ε. Следовательно,, то есть α(х)+β(х) – бесконечно малая. Замечание. Отсюда следует, что сумма любого конечного числа бесконечно малых есть бесконечно малая.
Доказательство. Выберем число М такое, что | f(x)|<M при | x-x0|< δ1, и найдем такое δ2, что | α(x)|<ε/M при | x-x0 |<δ2. Тогда, если выбрать в качестве δ меньшее из чисел δ1 и δ2, |α (x)·f(x)|<M·ε/M=ε, то есть α(х)·f(x) – бесконечно малая. Следствие 1. Произведение бесконечно малой на конечное число есть бесконечно малая. Следствие 2. Произведение двух или нескольких бесконечно малых есть бесконечно малая. Следствие 3. Линейная комбинация бесконечно малых есть бесконечно малая.
Доказательство. 1) Пусть Тогда | f(x)-A |<ε при х→х0, то есть α(х)=f(x)-A – бесконечно малаяпри х→х0. Следовательно, f(x)=A+α(x). 2) Пусть f(x)=A+α(x). Тогда значит, | f(x)-A |<ε при | x - x0 | < δ(ε). Cледовательно, . Замечание. Тем самым получено еще одно определение предела, эквивалентное двум предыдущим.
Дата добавления: 2014-01-14; Просмотров: 332; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |