КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сложное сопротивление. Кручение с изгибом
16.1. Общие понятия и определения
Кручение с изгибом – частный случай сложного сопротивления, который может рассматриваться как сочетание чистого кручения и поперечного изгиба.
16.2. Определение внутренних усилий и напряжений при кручении с изгибом
Для определения внутренних усилий воспользуемся методом мысленных сечений:
Обычно две составляющие поперечной силы (Qy, Qz) и изгибающего момента (My, Mz) приводят к их полным результирующим
Заметим, что часто поперечной силой пренебрегают (для достаточно длинных валов) и рассматривают кручение с изгибом как совместное действие крутящего (Mx, Mкр, T) и изгибающего (Mи) моментов. Опасное сечение вала будем искать, как и прежде, по эпюрам внутренних усилий. При построении эпюр внутренних усилий при кручении с изгибом необходимо иметь ввиду следующие правила: 1) эпюры крутящего момента Mx, а также эпюры составляющих поперечной силы Qy, Qz и изгибающего момента My, Mz строятся по той же процедуре, что и ранее; 2) результирующая поперечная сила Q может не лежать в плоскости действия результирующего изгибающего момента Mи, а потому между ними уже не будет соблюдаться зависимость Журавского (dM/dx=Q), а, следовательно, и правила проверки эпюр, введенные для плоского изгиба; 3) согласно (16.1), эпюра полного изгибающего момента будет прямой только на тех участках, где My и Mz ограничены прямыми с общей нулевой точкой, на участках, где такая общая точка отсутствует эпюра Mи будет описываться вогнутой кривой и строится по точкам (связано с тем, что вектор Mи в разных сечениях имеет различное направление). Опасное сечение при кручении с изгибом устанавливается из совместного анализа эпюр крутящего Mx и полного изгибающего Mи моментов. Опасным будет считаться то сечение, где оба момента достигают своей максимальной величины. Если моменты достигают максимума в разных сечениях, необходимо проверить все сечения, в которых эти внутренние усилия достаточно велики.
а) напряжения при кручении
б) напряжения при изгибе
где Jос – осевой момент инерции для круглого сечения (Jос=Jz=Jy). Вводя обозначение
Wос – осевой момент сопротивления для круглого сечения(Wос=Jос/ρmax, ρmax=d/2).
16.3. Определение главных напряжений и расчет на прочность при кручении с изгибом
Подставив величины максимальных нормальных и касательных напряжений в формулу для главных напряжений (σ2=0), получим:
Расчет брусьев при изгибе с кручением проводится с применением теорий прочности. При этом расчет элементов из пластичных материалов выполняется на основе III или IV теорий прочности, а из хрупких – по теории Мора. Проанализируем расчет на прочность по III теории прочности
Подставляя в эту формулу выражения для главных напряжений, получим:
Запишем условие прочности через крутящий и изгибающий моменты, учитывая, что для круглого сечения Wp=2·Wос:
Выражение под корнем называют приведенным (эквивалентным) моментом по третьей теории:
Окончательно условие прочности запишем в виде
Проанализируем расчет на прочность по IV теории прочности
Приведенный (эквивалентный) момент по четвертой теории:
Окончательно условие прочности запишем в виде
Дата добавления: 2014-01-14; Просмотров: 1321; Нарушение авторских прав?; Мы поможем в написании вашей работы! |