КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Применение формулы Тейлора с остаточным членом в форме Лангранджа
Тема: Применение формулы Тейлора с остаточным членом в форме Лангранджа, Выпуклость, Вогнутость. Лекция №16 Пусть функция f(x) – два раза дифференцируема в О(х0), тогда f(x)=f(x0)+f’(x0)(x-x0)+[f’’(c)(x-x0)2]/2 где с лежит между х и х0
уравнение касательной
Если |f’’(x)|£M "xÎO(x0) f(x)-n+1 – дифференцируема в О(х0) f(x)=Tn(x)+Rn(x)§ в О(х0) n=1 T1(x) – линейная функция n=2 - график парабола |f(x)-T1(x)|=|f’(x0)||x-x0| |f(x)-T2(x)|=[|f’’(x0)||x-x0|2]/2 T3(x)=ax3+bx2+cx+d – график кубическая парабола
Выпуклость и вогнутость. Определение: Пусть функция f(x) – дифференцируема в точке х0, то она называется выпуклой (вогнутой) в верх в точке х0, если f(x)-yкас<0 в О(х0)
Определение: Пусть функция f(x) – дифференцируема в точке х0, то она называется выпуклой (вогнутой) вниз в точке х0, если f(x)-yкас>0 в О(х0)
Определение: Пусть функция f(x) – дифференцируема в точке х0, то она называется выпуклой (вогнутой) в верх (вниз) на интервале (a,b), если она выпукла в верх (вниз) в каждой точке этого интервала. Определение: (точки перегиба) Пусть функция f(x) диф- ференцируема в О°(х0) и непрерывна в О(х0). Точка х0 – называется точкой перегиба графика f(x), если при пере- ходе через точку меняется знак выпуклости.
Теорема: (о достаточном условии выпуклости функции). Пусть функция f(x) дважды дифференцируема в точке х0 и f’’(x0)<0 (f’’(x0)>0), тогда f(x) – выпукла вверх (вниз) в тоске х0. Доказательство: Напишем формулу Тейлора с остаточным членом в форме пеано:
Если х близко к х0, то знак квадрата скобки определяется знаком f(x0). Если f’’(x0)<0, то f(x)-yкас>0 в О°(х0). Если f’’(x0)>0, то f(x)-yкас>0 в О°(х0) Теорема: Путь функция f(x) непрерывна в О(х0) и дважды дифференцируема в О°(х0), причём f’(x) меняет знак при переходе через точку х0, тогда точка х0 – точка перегиба. Доказательство:
f’’(x) - + (·) x x0 f’’(x)<0 в O°-(x0)Þ f(x) – выпукла вверх в О°-(х0) f’’(x)>0 в O°+(x0)Þ f(x) – выпукла вниз в О°+(х0) Следствие: Если f(x) дважды дифференцируемы в точке х0. Если точке х0 точка перегиба, то f’’(x0)=0 Путь точка х0 точка перегиба и существует f’’(x0)>0, тогда то есть при переходе через точку х0 левая часть равенства f(x)-yкас не меняет знак. Аналогично получаем для f(x)>0 f’’(x0)=0 Замечание: Условие равенства f’’(x0)=0 необходимо, но недостаточно. Теорема: (о достаточном условие экстремума по второй производной) Пусть функция f(x) дважды дифференцируема в точке х0, тогда точка х0 точка максимума если f’’<0, точка х0 точка минимума если f’’(x0)>0. Доказательство: При х достаточно большим и х0 знак в квадратных скобках совпадает со знаком f’’(x0)Þ f(x)-f(x0)>0 в О°(х0), если f’’(x0)>0 то есть f(x)>f(x0) в О°(х0)Þ х0 точка минимума, если f(x)-f(x0)<0 в О°(х0), и если f’’(x0)<0 то есть f(x)<f(x0) в О°(х0)Þ х0 точка максимума. Замечание: Если f’(x0)=0 и f’’(x0)=0, то нужны дополнительные исследования.
§ Rn(x)-остаточный член в форме Лангранджа
Дата добавления: 2014-01-14; Просмотров: 388; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |