Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Случайная рекомбинация




Сайт-специфическая рекомбинация

Этот тип рекомбинации связан с обменом между специфическими последовательностями и характерен для прокариот и дрожжей. Сайт-специфическая рекомбинация обычно происходит при интеграции фаговых геномов в бактериальную хромосому. В результате рекомбинации обмениваются специфические последовательности фаговой и бактериальной ДНК, обнаруживающие короткие – 100–150 нуклеотидных пар – участки гомологии. Ферменты, вовлеченные в это событие, действуют только на особую пару последовательностей-мишеней. Сайт-специфическая рекомбинация была открыта в результате исследований механизма перемещения бактериофага λ по хромосоме E.coli. В интегрированном состоянии вирус внедрен в бактериальную хромосому и реплицируется как часть ДНК клетки-хозяина. Когда вирус проникает в клетку, на матрице вирусного гена синтезируется фермент λ-интеграза. Этот фермент и катализирует сайт-специфическую рекомбинацию. Процесс начинается с того, что молекулы интегразы плотно связываются со специфическими последовательностями на кольцевой хромосоме фага. Затем получившийся ДНК-белковый комплекс связывается со сходными, но не идентичными последовательностями на бактериальной хромосоме, сближая таким образом бактериальную и фаговую хромосомы. Затем интеграза делает надрезы в молекулах ДНК, формируя маленький участок сочленения гетеродуплекса. Интеграза напоминает ДНК-топоизомеразу в том отношении, что она формирует ковалентную связь с ДНК в тех же местах, где и разрывает ДНК. У бактерий топоизомераза I и гираза являются ключевыми ферментами, определяющими степень суперскрученности ДНК при ее ответе на стрессовые внешние воздействия – такие как повышение температуры, изменении рН и оксидативный стресс. Топоизомераза I катализирует две основные реакции – разрезание и воссоединение однонитевой нормально спаренной ДНК для релаксации ее суперскрученности при репликации или транскрипции. Множество эндогенных факторов действуют на эти две реакции разобщающее и приводят к образованию и накоплению ТорI-разрешающего комплекса, который является переходным к образованию двунитевыфх разрывов ДНК со всеми вытекающими последствиями.

Тот же самый механизм сайт-специфической рекомбинации приходит в действие, только в обратном направлении, когда фаг λ вырезается из сайта интеграции.

Рекомбинация между негомологичными последовательностями нуклеотидов происходит в клетках прокариот и дрожжей достаточно редко, а в клетках млекопитающих – довольно часто. К негомологичной рекомбинации можно отнести процесс случайного встраивания вирусной или плазмидной ДНК в ДНК клеток животных.

Многие мобильные последовательности ДНК, включая вирусы и транспозоны, кодируют интегразы (другое название – транспозазы), которые позволяют их ДНК встраиваться в хромосомы с помощью механизма, отличающегося от сайт-специфической рекомбинации, которую использует бактериофаг λ. Так же, как и λ-интеграза, эти ферменты опознают специфические последовательности ДНК в соответствующем мобильном элементе, встриивание или вырезание которого они катализируют. В отличие от интегразы фага λ, эти интегразы/транспозазы не требуют специфических последовательностей ДНК в хромосоме-мишени и не формируют сочленения гетеродуплекса. Вместо этого они образуют надрезы с обоих концов линейной последовательности мобильного элемента, а затем катализируют взаимодействие этих концов ДНК с ДНК-мишенью, разрывая в ней фосфодиэфирные связи. Так как это разрезание происходит в разных нитях не прямо друг напротив друга, а с «зазором» в несколько нуклеотидов, то в результате в рекомбинантной молекуле ДНК образуются две короткие однонитчатые бреши, по одной на каждом конце мобильного элемента. На завершающем этапе процесса рекомбинации эти бреши застраиваются ДНК-полимеразой. Таким образом в ДНК клетки-хозяина образуются короткие дуплицированные прямые повторы, прилежащее к месту инсерции мобильного элемента. Такие фланкирующие прямые повторы являются отличительной чертой случайной, или транспозиционной рекомбинации. Мы еще вернемся к процессу негомологической рекомбинации при описании негомологического воссоединения двунитевых разрывов ДНК. Там же будет и приведен соответствующий рисунок.




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 1141; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.