Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Нормальных форм




Минимизация формул булевых функций в классе дизъюнктивных

Как было установлено выше, произвольная булева функция может быть представлена формулой в ДНФ и КНФ, причем такое представление неоднозначно. Равносильными преобразованиями можно получить формулу, содержащую меньшее число вхождений переменных. Например, две различные формулы: f 1(x 1, x 2) = x 1V x 1& x 2 V Ø x 2 и f 2(x 1, x 2) = x 1 V Ø x 2 равносильны, так как в силу 2-го закона поглощения (равносильность 6б из раздела 4.3) x 1 V x 1& x 2 º x 1.

Но в формуле f 1(x 1, x 2) содержится четыре вхождений переменных, а в формуле f 2(x 1, x 2) – два.

Определение 4.10. ДНФ называется минимальной, если она содержит наименьшее общее число вхождений переменных среди всех равносильных ей ДНФ.

Определение 4.11. Импликантом булевой функции f (x 1, x 2,..., xn) называется элементарная конъюнкция С, не равная тождественно 0, такая что C V f f. Отметим, что любая конъюнкция любой ДНФ в силу закона идемпотентности (равносильность 5б) является импликантом этой функции.

Определение 4.12. Импликант C функции f называется простым импликантом, если после отбрасывания любой переменной из C получается элементарная конъюнкция, не являющаяся импликантом функции f.

Пример 4.17.

Для функции x & y V x & z V x & y & z º x &(y V z) конъюнкции x & y и x & z – простые импликанты, а x & y & z – импликант, но не простой.

Определение 4.13. Дизъюнкция всех простых импликантов булевой функции f называется сокращенной ДНФ функции f.

Для нахождения сокращенной ДНФ используется следующий алгоритм, в основе которого лежит метод Квайна.

Алгоритм 4.5. (Алгоритм Квайна построения сокращенной ДНФ).

Шаг 1. Находим для данной булевой функции f ее формулу F, находящуюся в СДНФ.

Шаг 2. Находим все простые импликанты функции f. Для этого все элементарные конъюнкции формулы F попарно сравниваем между собой. Если две элементарные конъюнкции таковы, что они имеют вид C & xi и Cxi, то выписываем конъюнкцию С. Это является следствием 1-го закона расщепления (склеивания) (равносильность 7а). Конъюнкция С содержит n - 1 вхождение переменных. Элементарные конъюнкции, для которых произошло склеивание, помечаем. После построения всех конъюнкций, включающих n - 1 вхождение переменных, вновь сравниваем их попарно, производим, если возможно, склеивание, выписываем полученные конъюнкции из n - 2 членов, помечаем склеивающиеся конъюнкции из n - 1 членов и т. д. Процесс заканчивается, когда дальнейшее склеивание невозможно. Все непомеченные элементарные конъюнкции являются простыми импликантами. Их дизъюнкция даст нам формулу F 1, равносильную F, находящуюся в ДНФ и состоящую из простых импликантов, т.е. сокращенную ДНФ.

Пример 4.18.

Найдем сокращенную ДНФ функции из примера 4.4:

f (x 1, x 2, x 3) = Ø(x 2 Ø x 3) ~(Ø x 1V x 2).

1. Шаг 1 был выполнен ранее (см. примеры 4.13, 4.15). СДНФ формулы f (x 1, x 2, x 3) является формула

F (x 1, x 2, x 3) = Ø x 1& x 2& x 3V x 1x 2x 3 V x 1x 2& x 3 V x 1& x 2& x 3.

2. Попарно сравниваем все 4 трехчленные конъюнкции (всех сравнений C = 6) и применяем, где это возможно, закон склеивания:

Ø x 1& x 2& x 3V x 1& x 2& x 3 = x 2& x 3.

x 1x 2x 3 V x 1x 2& x 3 = x 1x 2.

x 1x 2& x 3 V x 1& x 2& x 3 = x 1& x 3.

Итак, на первом этапе получили 3 двучленные конъюнкции:

x 2& x 3, x 1x 2, x 1& x 3.

Все трехчленные конъюнкции оказались помеченными.

Попарно сравниваем все 3 двучленные конъюнкции (всех сравнений 3) и замечаем, что склеивание невозможно.

В результате получим сокращенную ДНФ формулы f:

F 1(x 1, x 2, x 3) = x 2& x 3 V x 1x 2 V x 1& x 3.

На практике для построения сокращенной ДНФ удобнее пользоваться модифицированным методом Квайна – Мак-Класки. Этот метод состоит в автоматизации процесса склеивания. Разберем этот метод на конкретном примере.

Алгоритм 4.6. (Алгоритм Квайна - Мак-Класки построения сокращенной ДНФ).

Шаг 1. Составим таблицу значений булевой функции (если функция задана формулой в СДНФ, то в силу замечания к алгоритму 4.3 это всегда можно сделать)

Для нашего примера такая таблица уже составлена – это таблица 4.4.

Очевидно, в силу алгоритма 4. 3 (см. также пример 4.15), эта функция имеет следующую формулу в СДНФ:

f (x 1, x 2, x 3) = Ø x 1& x 2& x 3V x 1x 2x 3 V x 1x 2& x 3 V x 1& x 2& x 3.

Шаг 2. Выпишем наборы переменных, на которых функция принимает значение 1, причем эти наборы упорядочим по группам так, что в каждую группу входят наборы с одинаковым числом единиц. Пусть Ai – группа наборов переменных, таких, что каждый набор содержит i единиц, и функция на этом наборе переменных принимает значение, равное единице.

Группы A 0 (где все переменные нули, а значение функции равно 1) нет.

Группа A 1 (где одна переменная единица, остальные нули, и значение функции равно 1):

1 0 0

Группа A 2:

0 1 1

1 0 1

Группа A 3:

1 1 1

Шаг 3. Производим попарное сравнение наборов переменных, входящих в соседние группы. Если при этом сравнении обнаружатся два набора, которые отличаются только в одном разряде, то вместо них записывается один набор, в котором вместо несовпадающих разрядов ставится “ – “ (прочерк). После всех возможных сравнений из предшествующего списка вычеркиваются все наборы, которые участвовали в образовании хотя бы одного набора с прочерком. Формируются два массива наборов: наборы с прочерками (массив P) и невычеркнутые (массив R).

Эти действия соответствуют склеиванию конъюнкций и уменьшению числа вхождений переменных.

Для нашего примера при сравнении групп A 1 и A 2:

вместо (1 0 0) и (1 0 1) получим (1 0 –);

При сравнении групп A 2 и A 3:

вместо (0 1 1) и (1 1 1) получим (– 1 1);

вместо (1 0 1) и (1 1 1) получим (1 – 1);

После этого этапа массив R пуст, т. к. все наборы участвовали в образовании наборов с прочерками, а массив P = P (1) включает следующие наборы:

(1 0 –);

(– 1 1);

(1 – 1).

Далее рассмотрим наборы с прочерками. Они вновь попарно сравниваются между собой. При этом имеет смысл сравнивать лишь наборы, в которых прочерк стоит в совпадающих разрядах. Если сравниваемые наборы отличаются друг от друга только в одном разряде, то выписываем набор с двумя прочерками (старым и новым). После всех попарных сравнений из множества наборов с одним прочерком вычеркиваются все наборы, имеющие один прочерк и участвовавшие в образовании набора с двумя прочерками. Наборы с одним прочерком, не участвовавшие в образовании наборов с двумя прочерками, помещаются в массив R.

Для нашего примера попарное сравнение наборов с одним прочерком не приводит к образованию наборов с двумя прочерками.

Далее рассмотрим наборы с двумя прочерками и т. д. Процесс прекращается, если на очередном шаге все рассматриваемые наборы попадают в R. Нетрудно убедиться, что каждому набору из R соответствует простой импликант, причем единице соответствует переменная, взятая без отрицания, нулю – переменная, взятая с отрицанием, а прочерку – отсутствие соответствующей переменной. Сокращенная ДНФ есть дизъюнкция этих простых импликантов.

Для нашего примера процедура сравнения заканчивается после формирования наборов с одним прочерком. Массив R после этого включает наборы:

(1 0 –);

(– 1 1);

(1 – 1).

Сокращенная ДНФ имеет вид:

f (x 1, x 2, x 3) = x 2& x 3 V x 1x 2 V x 1& x 3.

Далее процесс нахождения минимальной ДНФ сводится к отбрасыванию некоторых простых импликантов.

Определение 4.14. Простой импликант называется существенным (ядровым) импликантом, если его удаление из сокращенной ДНФ функции приводит к ДНФ, которая не равносильна исходной ДНФ.

Построение минимальной ДНФ сводится к отбрасыванию несущественных импликантов из сокращенной ДНФ.

Определение 4.15. Будем говорить, что элементарная конъюнкция A покрывает элементарную конъюнкцию В, если она является частью этой конъюнкции, т.е. целиком входит в нее.

Пример 4.19.

Элементарная конъюнкция x 1x 2 покрывает элементарные конъюнкции x 1x 2& x 3 и x 1x 2x 3, но не покрывает элементарные конъюнкции x 1& x 2& x 3 и Ø x 1x 2x 3.

Нахождение минимальной ДНФ состоит в выборе таких простых импликантов из сокращенной ДНФ, которые в совокупности покрывают все элементарные конъюнкции СДНФ и содержат минимальное число вхождений переменных. Такая ДНФ равносильна СДНФ, т. к. в силу определения 4.15 ее значения на некотором наборе переменных совпадают со значениями СДНФ.

Рассмотрим следующий алгоритм нахождения минимальной ДНФ.

Алгоритм 4.7. (Алгоритм построения минимальной ДНФ с помощью таблицы покрытий).

Шаг 1. Составление таблицы покрытий.

Дляданной функции

f (x 1, x 2,..., xn) = Ai º Bj, m k,

где Ai –элементарные конъюнкции, входящие в СДНФ, i = 1, 2,..., k, k n, а Bj – простые импликанты сокращенной ДНФ, j = 1, 2,..., m, m k, построим таблицу покрытий, число строк которой равно числу полученных простых импликантов, а число столбцов – числу элементарных конъюнкций в СДНФ. Если в некоторую элементарную конъюнкцию входит какой-либо простой импликант, то на пересечении соответствующего столбца и строки ставится метка (например, “ * “).

Шаг 2. Выделение столбцов, содержащих одну метку.

Если в каких-нибудь столбцах составленной таблицы имеется только одна метка, то строки, в которых стоят эти метки, определяют простые импликанты, которые не могут быть исключены из сокращенной ДНФ, т. к. без них не может быть получено покрытие всех элементарных конъюнкций СДНФ. Они являются существенными и обязательно входит в минимальную ДНФ. Поэтому из таблицы покрытий исключаются строки, соответствующие существенным импликантам, и столбцы элементарных конъюнкций СДНФ, покрывемые этими существенными импликантами.

Шаг 3. Вычеркивание лишних столбцов.

Если в таблице есть столбцы, в которых имеются метки в одинаковых строках, то оставляем только один из них (все равно, какой), так как покрытие элементарных конъюнкций, соответствующих выброшенным столбцам, осуществляется за счет простого импликанта, соответствующего оставшемуся столбцу.

Шаг 4. Вычеркивание лишних существенных импликантов.

Если после выбрасывания некоторых столбцов в результате шага 3, в таблице появляются строки, в которых нет ни одной метки, то простые импликанты, соответствующие этим строкам, исключаются из дальнейшего рассмотрения, т. к. они не покрывают оставшиеся в рассмотрении элементарные конъюнкции СДНФ.

Шаг 5. Выбор минимального покрытия существенными импликантами.

Выбирается такая совокупность строк (т. е. существенных импликантов), чтобы они покрывали все оставшиеся столбцы (элементарные конъюнкции СДНФ). При нескольких возможных вариантах предпочтение отдается варианту покрытия с минимальным общим числом вхождения переменных.

Пример 4.20.

Продолжим предыдущий пример.

1. Составляем таблицу покрытий. Для формулы, булевой функции с СДНФ:

f (x 1, x 2, x 3) = Ø x 1& x 2& x 3V x 1x 2x 3 V x 1x 2& x 3 V x 1& x 2& x 3

мы получили равносильную ей сокращенную ДНФ:

F 1(x 1, x 2, x 3) = x 2& x 3 V x 1x 2 V x 1& x 3.

Каждой элементарной конъюнкции x 1 s 1& x 2 s 2&...& xnsn, (xi si = xi, если si = 0 и xisi = Ø xi, если si = 1, i = 1, 2,..., n), входящей в СДНФ, можно сопоставить набор переменных из нулей и единиц. Этот наборы идентифицируют столбцы. Каждому простому импликанту из сокращенной ДНФ также можно сопоставить набор из нулей, единиц и прочерков, где 0 означает, что переменная берется с отрицанием, 1 – переменная берется без отрицания, “ – ” – переменная отсутствует. Для нашего примера получим следующую таблицу (таблица 4.6) из 4 столбцов, соответствующих 4 элементарным конъюнкциям СДНФ F (x 1, x 2, x 3, x 4) и 3 строк, соответствующих 3 простым импликантам сокращенной ДНФ F 1(x 1, x 2, x 3, x 4).

 

Таблица 4.6

         
–11 *     *
10–   * *  
1–1     * *

 

2. Выделяем столбцы, содержащие одну метку – это 1-ый и 2-ой столбцы. Импликант x 2& x 3 (ему соответствует 1-ая строка) является существенным. Он покрывает две элементарные конъюнкции СДНФ: Ø x 1& x 2& x 3 и x 1& x 2& x 3 (им соответствуют 1-ый и 4-ый столбцы). Импликант x 1x 3 (ему соответствует 2-ая строка) тоже является существенным. Он покрывает две элементарные конъюнкции СДНФ: x 1x 2x 3 и x 1x 2& x 3 (им соответствуют 2-ой и 3-ий столбцы).

Все указанные строки (1-ую и 2-ую) и столбцы (1-ый, 2-ой, 3-ий и 4-ый) вычеркиваем из таблицы покрытий. После этого все элементы таблицы окажутся вычеркнутыми. Следовательно, два существенных импликанта x 2& x 3 и x 1x 3 покрывают все элементарные конъюнкции СДНФ.

Итак, минимальная ДНФ для нашей функции имеет вид:

F 2(x 1, x 2, x 3) = x 2& x 3 V x 1x 2 .

Рассмотрим еще один пример нахождения минимальной ДНФ булевой функции.

Пример 4.21.

Пусть булева функция задана таблицей

Таблица 4.7

x 1 x 2 x 3 x 4 f (x 1, x 2, x 3, x 4)
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1  

Применим вначале алгоритм Квайна - Мак-Класки для нахождения сокращенной ДНФ.

Очевидно, в силу алгоритма 4.3, данная функция имеет следующую формулу в СДНФ:

F (x 1, x 2, x 3, x 4) = Ø x 1x 2& x 3& x 4 V Ø x 1& x 2x 3 & x 4 V Ø x 1& x 2x 3x 4 V

Ø x 1& x 2& x 3& x 4V x 1x 2x 3& x 4V x 1x 2& x 3& x 4V x 1& x 2x 3x 4V x 1& x 2x 3& x 4.

Выпишем наборы переменных, на которых функция принимает значение 1, причем эти наборы упорядочим по группам так, что в каждую группу входят наборы с одинаковым числом единиц.

Группы A 0 нет.

Группа A 1:

0 1 0 0

Группа A 2:

0 0 1 1

0 1 0 1

1 0 1 0

1 1 0 0

Группа A 3:

0 1 1 1

1 0 1 1

1 1 0 1

Группы A 4 нет.

Производим попарное сравнение наборов переменных, входящих в соседние группы.

При сравнении групп A 1 и A 2:

вместо (0 1 0 0) и (0 1 0 1) получим (0 1 0 –);

вместо (0 1 0 0) и (1 1 0 0) получим (– 1 0 0);

При сравнении групп A 2 и A 3:

вместо (0 0 1 1) и (0 1 1 1) получим (0 – 1 1);

вместо (0 0 1 1) и (1 0 1 1) получим (– 0 1 1);

вместо (0 1 0 1) и (0 1 1 1) получим (0 1 – 1);

вместо (0 1 0 1) и (1 1 0 1) получим (– 1 0 1);

вместо (1 0 0 1) и (1 0 1 1) получим (1 0 – 1);

вместо (1 0 0 1) и (1 1 0 1) получим (1 – 0 1);

вместо (1 1 0 0) и (1 1 0 1) получим (1 1 0 –).

После этого этапа массив R пуст, т. к. все наборы участвовали в образовании наборов с прочерками, а массив P = P (1) включает следующие наборы:

(0 1 0 –);

(– 1 0 0);

(0 – 1 1);

(– 0 1 1);

(0 1 – 1);

(– 1 0 1);

(1 0 – 1);

(1 – 0 1);

(1 1 0 –).

Теперь попарно сравниваются между собой наборы с прочерками. Наборы с одним прочерком, не участвовавшие в образовании наборов с двумя прочерками, помещаются в массив R.

Для нашего примера

вместо (0 1 0 –) и (1 1 0 –) получим (– 1 0 –);

вместо (– 1 0 0) и (– 1 0 1) получим (– 1 0 –)

После этого этапа в массив R попадают наборы, не участвовавшие в образовании наборов с двумя прочерками:

(0 – 1 1);

(– 0 1 1)

(0 1 – 1);

(1 0 – 1);

(1 – 0 1);

Массив P (2) состоит из набора с двумя прочерками:

(– 1 0 –).

Набор с двумя прочерками один и процедура сравнения заканчивается. Поэтому все наборы из P (2) попадают в массив R, который после этого включает наборы:

(0 – 1 1);

(– 0 1 1)

(0 1 – 1);

(1 0 – 1);

(1 – 0 1);

(– 1 0 –).

Сокращенная ДНФ имеет вид:

F 1(x 1, x 2, x 3, x 4) = Ø x 1& x 3& x 4 V Ø x 2& x 3& x 4 V Ø x 1& x 2& x 4 V x 1x 2& x 4 V x 1x 3& x 4 x 2x 3.

Найдем теперь минимальную ДНФ с помощью таблицы покрытий (алгоритм 4.7).

Составляем таблицу покрытий.

Для нашего примера получим следующую таблицу (таблица 4.8) из 8 столбцов, соответствующих 8 элементарным конъюнкциям СДНФ F (x 1, x 2, x 3, x 4) и 6 строк, соответствующих 6 простым импликантам сокращенной ДНФ F 1(x 1, x 2, x 3, x 4).

Таблица 4.8

                 
0-11 *     *        
-011 *         *    
01-1     * *        
10-1         * *    
1-01         *     *
-10-   * *       * *

Выделяем столбцы, содержащие одну метку – это 2-ой и 7-ой столбцы. Оба этих столбца определяют один и тот же импликант x 2x 3 (ему соответствует 6-ая строка), который является существенным. Он покрывает следующие четыре элементарные конъюнкции СДНФ: Ø x 1& x 2x 3& x 4, Ø x 1& x 2x 3x 4, x 1& x 2x 3x 4, x 1& x 2x 3& x 4 (им соответствуют 2-ой, 3 - ий, 7 - ой и 8 - ой столбцы). Все указанные строки и столбцы вычеркиваем из таблицы покрытий. После этого таблица примет вид:

Таблица 4.9

         
0-11 * *    
-011 *     *
01-1   *    
10-1     * *
1-01     *  

 

В полученной таблице нет одинаковых столбцов. В полученной таблице нет пустых строк. Выбираем такую совокупность существенных импликантов, которая покрывает все столбцы и содержит наименьшее количество букв. Для нашей таблицы это импликанты Ø x 1& x 3& x 4 и x 1x 2& x 4 (1 - ая и 4 - ая строки таблицы 4. 9), т. к. они покрывают все оставшиеся столбцы.

Итак, минимальная ДНФ для нашей функции имеет вид:

F 2(x 1, x 2, x 3, x 4) = Ø x 1& x 3& x 4 V x 1x 2& x 4 V x 2x 3 .

 




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 465; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.