Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вопрос 3. Поглощение света. Закон Бугера-Ламберта




Поглощением (абсорбцией) света называется уменьшение энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии в результате ее взаимодействия со средой. Интенсивность света при прохождении через вещество уменьшается.

С точки зрения электронной теории, при прохождении световой волны через вещество часть энергии волны затрачивается на возбуждение и поддержание колебаний электронов, входящих в состав атомов. Частично энергия колебаний электронов вновь переходит в энергию светового излучения в виде вторичных волн, частично же переходит в другие формы энергии, например, в энергию теплового движения атомов, т.е. во внутреннюю энергию вещества (нагревание вещества).

Поглощение света в веществе можно в общих чертах описать с энергетической точки зрения, не входя в детали механизма взаимодействия световых волн с атомами и молекулами поглощающего вещества.

Формальное описание поглощения света веществом было дано Бугером, который установил связь между интенсивностью света, прошедшего через конечный слой поглощающего вещества, и интенсивностью падающего на него света

I = I e - K l , (11.10)

 

где I 0λ – интенсивность светового излучения с длиной волны λ, падающего на поглощающий слой; I - интенсивность светового излучения, прошедшего поглощающий слой вещества толщиной l; К – коэффициент поглощения, зависящий от λ, т.е. К = f (λ), и индивидуальный для каждого вещества. Например, одноатомные газы и пары металлов (атомы которых можно считать изолированными, так как они находятся на значительных расстояниях друг от друга) обладают близким к нулю коэффициентом поглощения и только для очень узких интервалов длин волн Δ λ = (10-12

10-11) м наблюдаются резкие максимумы поглощения – линейчатый спектр поглощения. Эти спектральные линии поглощения соответствуют частотам собственных колебаний электронов в атомах.

Спектры поглощения многоатомных газов имеют вид линейчатых полос шириной Δ λ = (10-10 – 10-7) м, определяемых колебаниями атомов внутри молекул. Молекулы обладают набором близко расположенных собственных частот колебаний, что и обуславливает линейчатые полосы их поглощения, рис. 11.3.

 


Рис.11.3.

 

Здесь а) − линейчатый спектр поглощения, б) − полосатый спектр поглощения, в) − сплошной спектр поглощения.

В диэлектрических веществах нет свободных электронов, поэтому для них коэффициент поглощения мал (К = 10-3 – 10-5 см -1) и для них наблюдается сплошной спектр поглощения.

Если поглотителем является вещество в растворе, то поглощение света тем больше, чем больше молекул растворенного вещества встречает свет на своем пути. Поэтому коэффициент поглощения зависит от концентрации С. В случае слабых растворов, когда взаимодействием молекул растворенного вещества можно пренебречь, коэффициент поглощения пропорционален концентрации С:

К λ = c λ С, (11.11)

 

где c λ – коэффициент пропорциональности, который также зависит от λ. Учитывая (11.11), можно закон Бугера (11.10) переписать в виде:

 

, (11.12)

 

где c λ – показатель поглощения света на единицу концентрации вещества. Если концентрация растворенного вещества выражается в [моль/литр], то c λ называют молярным коэффициентом поглощения.

Соотношение (11.12) носит название закона Бугера-Ламберта-Бера. Отношение величины светового потока, вышедшего из слоя I , к во­шедшему I носит название коэффициента оптического ( или свето-) пропускания слоя Т:

Т = I / I 0λ = (11.13)

 

или в процентах

Т = I / I 100%. (11.14)

 

 
 

Поглощение слоя равно отношению

 

Логарифм величины 1/ Т называется оптической плотностью слоя D

D = lg 1/ T = lg I0λ / I lλ = 0,43 c λ Сl, (11.15)

 

т.е. оптическая плотность характеризует поглоще­ние света средой и линейно зависит от концентрации С (рис. 11.4).

 


Рис. 11.4.

 

Соотношение (11.15) может быть использовано как для определения концентрации растворов, так и для характеристики спек­тров поглощения веществ.

Зависимость оптической плотности от длины волны D = f (λ) является спектральной характеристикой поглощения данного вещества, а кривая, выражающая эту зависимость, называется спектром поглощения.

Cогласно модели атома Бора кванты света испускаются и поглощаются при переходе системы (атома) из одного энергетического состояния в другое. Если при этом в оптических переходах меняется только электронная энергия системы, как это имеет место в атомах, то в спектре линия поглощения будет резкой.

Однако для сложных молекул, энергия которых слагается из электронной Еэл, колебательной Екол и вращательной Евр энергии (Е =Еэл + Екол + Евр ) при поглощении света изменяется не только электронная энергия, но обязательно колебательная и вращательная. Причем поскольку ∆Еэл>>∆Eкол>>∆Евр, то в результате этого набор линий, соответствующих электронному переходу, в спектре поглощения растворов выглядит как полоса поглощения.

Коэффициент поглощения для металлов имеет большие значения примерно, (103 - 105) см -1 и поэтому металлы являются непрозрачными для света. В металлах вследствие наличия большого количества свободных электронов под действием электрического поля возникают быстропеременные токи. Энергия световой волны быстро уменьшается из-за выделения токами джоулевой теплоты, превращающейся во внутреннюю энергию металла. Чем выше проводимость металла, тем больше в нем свободных электронов и тем сильнее в нем поглощается свет.

Окрашенность поглощающих тел объясняется зависимостью коэффициента поглощения от длины световой волны.

Явление поглощения света используется при изготовлении светофильтров, которые в зависимости от химического состава стекол пропускают свет только определенных длин волн, поглощая остальные.

Большое распространение получил атомно-абсорбционный метод спектрального анализа, основанный на явлении избирательного поглощения света атомными парами химических элементов. При пропускании света через пары элемента (пары получают, например, при распылении раствора анализируемого образца в пламени, при испарении с поверхности образца под действием лазерного излучения, в различного рода атомизаторах: атомный пар поглощает свет только той частоты, которая соответствует частоте собственных колебаний электронов. Чувствительность метода составляет 10-8 % или 10-12 г.

Следует отметить, что в волоконно-оптических линиях связи используютсясветоводы, наоборот, имеющие область исключительно высокой прозрачности в диапозоне длин волн (0,3 – 8) мкм. Суммарные потери мощности света за счет собственного затухания характеризуются коэффициентом затухания, выражаемым в децибелах на километр (дБ / км). Так, при введении в световод длиной 1 км и с коэффициентом затухания

1 дБ / км оптического сигнала мощностью 10 Вт на его выходе будет принят сигнал мощностью 7,9 Вт. Обычное оконное стекло имеет затухание в несколько тысяч децибел на километр. Для систем оптической связи необходимо, чтобы оптические потери по всей длине 50-километрового световода не превышали 1 дБ / км. Более протяженные линии связи требуют снижения уровня потерь до 0,01 дБ / км. Если бы такой прозрачностью обладали оконные стекла, то улицу можно было бы видеть через стекло толщиной 200 км.

Контрольные вопросы:

1. Что такое дисперсия света?

2. Как связаны между собой преломляющий угол призмы и угол отклонения лучей ею?

3. Что показывает дисперсия вещества?

4. Чем отличается нормальная дисперсия от аномальной?

5. По каким признакам можно отличить спектры, полученные с помощью призмы и дифракционной решетки?

6. В чем заключаются основные положения и выводы электронной теории дисперсии света?

7. Почему металлы сильно поглощают свет?

 




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 2589; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.