Теорема: Если дифференцируемая функция возрастает в данном интервале ]a, b[, то в любой точке этого интервала ,
Если дифференцируемая функцияубывает в данном интервале ]a, b[, то в любой точке этого интервала;
Если дифференцируемая функцияне изменяется в данном интервале ]a, b[, то в любой точке этого интервала .
Интервалы, на которых функция возрастает [убывает], называются интервалами монотонности функции.
Если производнаяфункциинепрерывна, то разделять интервалы монотонности могут лишь точки, в которых , т. к. перемена знака непрерывной функции возможна лишь при переходе производной функции через нуль.
Теорема: Если производнаяфункциина интервале ]a, b[ положительна, то функция на этом интервале строго возрастает.
Если производная функциина интервале ]a, b[ отрицательна, то функция на этом интервале строго убывает.
Если производнаяфункции на интервале ]a, b[ равна нулю, то функция на этом интервале не изменяется.
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление