КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Класифікація архітектури комп’ютера за типом адресованої пам’яті
Формати команд комп'ютера Як видно з рис. 3.1, крім коду операції до складу команди входить адресна частина. Цією частиною визначається місце знаходження даних, над якими виконується операція, задана кодом операції. Даних може бути декілька, і, крім того, вони можуть знаходитись в основній пам’яті, в регістрах процесора чи в запам’ятовуючих елементах інших вузлів комп’ютера. Тому і формати команд в цих випадках будуть різними. Можна здійснити класифікацію архітектури комп’ютера за типом адресованої пам’яті. Залежно від того, який тип пам’яті адресується, розрізняють наступні типи архітектур комп’ютера: стекова, акумуляторна, на основі регістрів загального призначення. В стековій архітектурі (рис. 3.15) операнд завжди знаходиться в вершині стека - спеціальному регістрі пам’яті, з якого загружається в регістр процесора, або через нього результат операції загружається в пам’ять. Стек представляє собою пам’ять з детермінованою вибіркою, яка працює за принципом „останній прийшов - перший вийшов” (LIFO - Last In First Out). Стек виконує дві операції: push - вштовхування даних в стек, pop - виштовхування даних з стеку. Рис. 3.15. Стекова архітектура Інформація може бути занесеною в вершину стека з пам’яті або з регістра АЛП процесора. Перевага стекової архітектури - відсутність в команді адресної частини. З іншого боку, стекова архітектура не передбачає довільного доступу до комірок пам’яті, тому часто важко створити для неї ефективну програму. Крім того, стек не дозволяє підвищити продуктивність комп’ютера за рахунок розпаралелення, оскільки наявна лише одна вершина стека. Стекова архітектура була реалізована в наступних комп’ютерах: В5500, В6500 фірми Burroughs, НР2116Р, НРЗ 000/70 фірми Hewlett-Packard, JEM 1, JEM 2 фірми ajile Systems. В акумуляторній архітектурі (рис. 3.16) операнд завжди знаходиться в акумуляторі - спеціальному регістрі процесора. В цей же регістр записується і результат операції. Оскільки адреса одного із операндів визначена, в команді достатньо вказати лише адресу другого операнда. Перевага даної архітектури - короткі команди. Вона була реалізована в комп’ютерах IBM 7090, DEC PDP-8 та інших.
Рис. 3.16. Акумуляторна архітектура Архітектура на основі регістрів загального призначення може мати такі різновидності як: архітектура типу пам’ять-пам’ять, регістр-пам’ять та регістр-регістр, В архітектурі типу пам’ять:пам’ять (рис. 3.17) операнди поступають на вхідні регістри АЛП процесора прямо з пам’яті. Результат операції також записується прямо в пам’ять. Оскільки час звернення до пам’яті є більшим часу звернення до регістрів, ця архітектура характеризується низькою швидкодією. Прикладом таких комп’ютерів є сім’ї IBM System/370 та DEC VAX. Рис. 3.17. Архітектура типу пам’ять-пам’ять Архітектура типу регістр-пам’ять (рис. 3.18) передбачає вибірку та подачу в АЛП одного із операндів з пам’яті, а іншого - з регістра, тому характеризується вищою швидкодією ніж попередня. Тут в процесорі наявна регістрова пам’ять, причому регістри є програмно доступними.
Рис. 3.18. Архітектура типу регістр-пам’ять В архітектурі типу регістр-регістр (рис. 3.19) дані в АЛП поступають лише з регістрів процесора, результати виконання операцій також записуються в регістри, а обмін між цими регістрами і пам’яттю здійснюється паралельно з роботою АЛП. Ця архітектура характеризується високою швидкодією, оскільки операції виконуються в АЛП з їх читанням-записом до регістрів, які є значно швидшими пам’яті. Крім того, для цієї архітектури характерною є фіксована довжина команд та однакова кількість тактів для виконання всіх команд.
Рис. 3.19. Архітектура типу регістр-регістр Будь-який із регістрів загального призначення може бути використаний в якості акумулятора, адресного регістра, індексного регістра, стекового регістра, а в деяких машинах навіть в якості програмного лічильника. Більшість сучасних комп’ютерів побудовані на основі описаної архітектури. Це, зокрема, комп’ютери - Pentium, SPARC, Power PC, ARM та інші. Разом з тим, за регістрами можуть бути закріплені конкретні функції - один набір служить в якості індексних регістрів, інший призначений для зберігання арифметичних операндів і т. д. Таким чином організовані регістри в комп’ютерах сім’ї CDC 6000/7000.
Дата добавления: 2014-11-06; Просмотров: 2670; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |