Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Катаболизм прокариот




Жизнь прокариот, как и любых других организмов, определяется наличием энергии. Из всех внешних источников энергии для живых организмов доступны только два вида: электромагнитная и химическая энергия окисления восстановленных соединений. Растительные организмы для жизнедеятельности используют как электромагнитную энергию, так и химическую энергию дыхания. Животные получают энергию исключительно в процессе дыхания.

Для прокариот характерны весьма различные способы получения энергии. Так, наиболее древняя группа анаэробных прокариот довольствуется химической энергией процессов брожения. Большинство прокариот получают энергию в реакциях аэробного окисления самых различных органических соединений. Однако среди них имеются анаэробы, способные переходить от аэробного окисления органических веществ субстрата к анаэробному нитратному или сульфатному дыханию. Высокоспециализированные группы хемолитотрофных микроорганизмов используют химическую энергию реакции аэробного окисления неорганических веществ
2, NH4+, NO2-, H2S, Fe2+ и др.). Наконец, сине-зеленые водоросли и фотосинтезирующие бактерии утилизируют как электромагнитную энергию, так и химическую энергию реакций окисления различных органических и неорганических восстановленных соединений.

Энергия, получаемая прокариотами, аккумулируется клеткой в высокоэнергетических соединениях с фосфатной связью: производные фосфорной кислоты – аденозинтрифосфат (АТФ), уридинтрифосфат (УТФ) и др., а также с тиоэфирной связью: производные карбоновых кислот – ацетил-коэнзим А (ацетил-К0А). Ключевым соединением в реакциях переноса энергии в процессах метаболизма является аденозинтрифосфат (АТФ).

При отщеплении одного из остатков фосфорной кислоты от молекулы АТФ с образованием АДФ освобождается значительное количество энергии:

АТФ→ АДФ + Фн + 31,8 кДж/моль

И наоборот, присоединение фосфорной кислоты к АДФ в реакциях фосфорилирования с образованием АТФ сопровождается аккумуляцией энергии.

Цепь переноса электронов. ЦПЭ. Ферменты цепи переноса электронов. Отщепление и перенос водорода или электронов от окисляемого субстрата на конечный акцептор осуществляется через последовательную цепь дыхательных ферментов, получивших название цепи переноса электронов (ЦПЭ) или дыхательной цепи.

В клетках аэробных и анаэробных прокариот наиболее обширную группу дыхательных ферментов составляют дегидрогеназы, катализирующие дегидрирование субстратов. Коферментами дегидрогеназ выступают пиридиннуклеотиды – никотинамидаденинуклеотид (НАД) и флавопротеиды (ФП) – флавинадениндинуклеотид (ФАД) и флавинмононуклеотид (ФМН).

Вторую группу дыхательных ферментов составляют цитохромы b, c, a и a3, коферменты которых представлены железопорфиринами. Звено цитохромов осуществляет перенос электронов по дыхательной цепи от дегидрогеназ на конечный акцептор – молекулярный кислород либо на нитраты или сульфаты.

Помимо вышеуказанных групп дыхательных ферментов в мембранной системе прокариот обнаружены хиноны типа убихинона и менахинона.

Расположение ферментов в дыхательной цепи определяется их окислительно-восстановительным потенциалом. Чем ниже окислительно-восстановительный потенциал фермента, тем в большей степени он является восстановителем и тем ближе он расположен к субстрату. Порядок расположения ферментов в цепи переноса электронов приблизительно таков: НАД – дегидрогеназы→ ФАД – или ФМН – дегидрогеназы→ убихинон →цитохромы d→ c→ a→ a3.

В полной дыхательной цепи при переносе водорода и электронов между НАД-дегидрогеназой и конечным акцептором образуются три молекулы АТФ.

Разные группы прокариотных организмов характкризуются разным уровнем организации дыхательной цепи. Так, в клетках первично анаэробных хемоорганотрофных микроорганизмов, ведущих процессы брожения, обнаружены только НАД-зависимые дегидрогеназы. Наиболее полно дыхательная цепь сформирована у фотосинтезирующих прокариот. Все анаэробные и факультативно анаэробные микроорганизмы имеют более или менее полную систему ферментов электронного транспорта. Однако у разных физиологических групп микроорганизмов дыхательные цепи отличаются по составу промежуточных ферментов – переносчиков и терминальным цитохромом (цитохромоксидаза или редуктаза).




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 674; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.