Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Двойные и криволинейные интегралы




Дифференциальные уравнения

Неопределённый и определённый интегралы

281-290. Найти неопределенные интегралы. В двух примерах (пункты а и б) проверить результаты дифференцированием.

281. а) ; б) ;

в) ; г) .

282. а) ; б) ;

в) ; г) .

283. а) ; б) ;

в) ; г) .

284. а) ; б) ;

в) ; г) .

285. а) ; б) ;

в) ; г) .

286. а) ; б) ;

в) ; г) .

287. а) ; б) ;

в) ; г) .

288. а) ; б) ;

в) ; г) .

289. а) ; б) ;

в) ; г) .

290. а) ; б) ;

в) ; г) .

301-310. Вычислить несобственный интеграл или доказать его расходимость.

30 1. . 30 2. . 30 3. . 30 4. . 30 5. . 306. .

30 7. . 30 8. . 30 9. . 310. .

 

321-330. Найти общее решение дифференциального уравнения.

321. . 322. .

323. . 324. . 325. .

326. . 327. .

328. . 329. .

330. .

341-350. Найти частное решение дифференциального уравнения , удовлетворяющее начальным условиям , .

341. ; , .

342. ; , .

343. ; , .

344. ; , .

345. ; , .

346. ; , .

347. ; , .

348. ; , .

349. ; , .

350. ; , .

 

351-360. Вычислить двойные интегралы по области D.

351. , где D – область, ограниченная линиям

352. , где D – область, ограниченная линиями

353. , где D – область, ограниченная линиями

354. , где D – область, ограниченная линиями

355. где D – область, ограниченная линиями

356. , где D – область, ограниченная линиями

357. где D – область, ограниченная линиями

358. где D – область, ограниченная линиями

359. , где D – область, ограниченная линиями

360. где D – область, ограниченная линиями

.

 

371 – 380. Вычислить криволинейные интегралы

371. где L – контур треугольника, образованного осями координат и прямой в положительном направлении, т.е. против движения часовой стрелки.

372. где L – дуга параболы от точки О (0;0) до точки

А(2;4).

373. где L – контур прямоугольника, образованного прямыми

в положительном направлении (против часовой стрелки).

374. вдоль кривой .

375. вдоль кривой от точки О (0;0) до точки А(1;1).

376. вдоль отточки О (0;0) до точки А(1;1).

377. , где L – четверть окружности 0 , против часовой стрелки.

378. , где L – первая арка циклоиды 0 .

379. вдоль линии от точки О (0;0) до точки А(1;1).

380. вдоль отрезка ОА, О (0;0), .




Поделиться с друзьями:


Дата добавления: 2014-11-07; Просмотров: 380; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.