КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сложение взаимно перпендикулярных
Биения Одного направления и одинаковой частоты. Сложение гармонических колебаний
Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты воспользовавшись методом вращающегося вектора амплитуды (см. § 140). Построим векторные диаграммы этих колебаний (рис. 203). Так как векторы A1 и А2 вращаются с одинаковой угловой скоростью w0, то разность фаз (j1 - j2) между ними остается постоянной. Очевидно, что уравнение результирующего колебания будет (144.1) В выражении (144.1) амплитуда Аи начальная фаза jсоответственно задаются соотношениями (144.2)
Рис. 203
Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (j2 - j1) складываемых колебаний. Проанализируем выражение (144.2) в зависимости от разности фаз (j2 - j1): 1) (j2 - j1) = ±2mp(m=0, 1, 2,...), тогда A = A1 + A2, т. е. амплитуда результирующего колебания Аравна сумме амплитуд складываемых колебаний; 2) (j2 - j1) = ±(2m + 1)p (m = 0,1, 2,...), тогда A = |A1 — A2|,т. е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний. Для практики особый интерес представляет случай, когда два складываемых гармонических колебания одинакового направления мало отличаются по частоте. В результате сложения этих колебаний получаются колебания с периодически изменяющейся амплитудой. Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями. Пусть амплитуды складываемых колебаний равны А, а частоты равны wи w + Dw, причем Dw ≪ w. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю: Складывая эти выражения и учитывая, что во втором сомножителе Dw/2 ≪ w, найдем (144.3) Результирующее колебание (144.3) можно рассматривать как гармоническое с частотой со, амплитуда А, которого изменяется по следующему периодическому закону: (144.4) Частота изменения Аsв два раза больше частоты изменения косинуса (так как берется по модулю), т. е. частота биений равна разности частот складываемых колебаний: Период биений Характер зависимости (144.3) показан на рис. 204, где сплошные жирные линии дают график результирующего колебания (144.3), а огибающие их — график медленно меняющейся по уравнению (144.4) амплитуды.
Рис. 204
Определение частоты тона (звука определенной высоты (см. § 158)) биений между эталонным и измеряемым колебаниями — наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д. Любые сложные периодические колебания s = f (t)можно представить в виде суперпозиции одновременно совершающихся гармонических колебаний с различными амплитудами, начальными фазами, а также частотами, кратными циклической частоте w0: (144.5) Представление периодической функции в виде (144.5) связывают с понятием гармонического анализа сложного периодического колебания, или разложения Фурье*. Слагаемые ряда Фурье, определяющие гармонические колебания с частотами w0, 2w0, Зw0 называются первой (или основной), второй, третьей и т. д. гармониками сложного периодического колебания.
Дата добавления: 2014-11-07; Просмотров: 351; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |